Витамины и их виды. Витамин С (аскорбиновая кислота) С транная и опасная болезнь

Витамин С является растворимым в воде витамином, который может распространяться в человеческом организме с обычной жидкостью. Человеческий организм не может сам вырабатывать витамин С и накапливать его, следовательно очень важно включать в каждодневный рацион как можно больше продуктов питания, которые содержат витамин С. Воздействие витамина на организм удерживается, как правило, от 8 до 14-ти часов после попадания его в органическую сферу. По-прошествии этого срока полезные свойства витамина начинают слабеть. Избыток растворяемых в жидкости витаминов, как правило, выводится из организма с аммиаком. В том случае, если ежедневный рацион обеспечивает меньше, чем половину от всего требуемого организмом числа , дефицитные симптомы могут проявляться уже спустя месяц, намного быстрее, чем в ситуации с дефицитом .

Полезные свойства, которыми обладает витамин C или аскорбиновая кислота:

  • Витамин C или аскорбиновая кислота налаживает здоровье зубов, нормализует десна, и костные ткани;
  • Кроме того, витамин С способствует заживлению ран и костных переломов, а аскорбиновая кислота улучшает рубцевание кожного покрова;
  • Аскорбиновая кислота предотвращает и ;
  • Витамин C, также как, аскорбиновая кислота повышает иммунитет;
  • Витамин С снижает риск возникновения заболеваний ОРЗ, ОРВИ, а аскорбиновая кислота ускоряет их лечение;
  • Витамин C также способствует укреплению кровеносных сосудов;
  • Аскорбиновая кислота повышает уровень усвоение железа;
  • Витамин C также считается одним из главных требуемых человеческому организму антиоксидантов.

Витамин C может способствовать росту и полноценному формированию клеток и улучшать правильное усвоение кальция. Если принимать витамин C в большом количестве, то это будет способствовать также правильной борьбе нашего организма с болезнями или инфекциями, при заживлении ран или восстановлении после операционных вмешательств. Кроме того, витамин C принимает участие в восстановлении и сохранении здоровья мягких хрящиков, костных тканей, зубов и десен, также помогает минимизировать потенциальное образование тромбов и разных гематом.

Помимо всего прочего, витамин C требуется для правильного синтеза коллагена, клеточного "цемента", который участвует в правильном формировании тканей, а также, в формировании кожных покровов, рубцовой ткани, сухожильных веток, связок и, конечно же, кровеносных сосудов головного мозга.Витамин C минимизирует всякий потенциальный авитаминоз, делает крепче иммунитет, чем увеличивает сопротивляемость организма к разного рода инфекциям, и помогает избежать заболеваний ОРЗ, ОРВИ, ГРИПП. С точки зрения доктора Linus Pauling, который является главным специалистом в этой области, витамин C также на 75% снижает риск заболеваний несколькими видами рака.

Содержание витамина С и аскорбиновой кислоты в продуктах

Аскорбиновая кислота в значительном объеме содержится в растительных продуктах питания, цитрусовых, овощах, листовых. Также аскорбиновая кислота содержится в дыне, брюссельской капусте, цветной и кочанной капусте, черной смородине, болгарском перце, землянике, помидорах, яблоках, абрикосах, персиках, облепихе, шиповнике, рябине, печеном картофеле в "мундирах". Кроме того, аскорбиновая кислота в достаточных количествах содержится в животных продуктах питания, например, в печени, надпочечниках, почках.

Витамин С в значительном количестве содержится в травах, например, в люцерне, коровяке, корене лопуха, песчанке, очанке, фенхеле, пажитнике, хмеле, хвоще, ламинарии, мяте перечной, крапиве, кайенском перце, красном перце, петрушке, сосновых иглах, тысячелистнике, подорожнике, листьях малины, красном клевере, плодах шиповника, листьях фиалки, а также в щавеле.

ВИТАМИНЫ
органические вещества, необходимые в небольших количествах в пищевом рационе как человека, так и большинства позвоночных. Синтез витаминов, как правило, осуществляется растениями, а не животными. Ежедневная потребность человека в витаминах составляет лишь несколько миллиграммов или микрограммов. В отличие от неорганических веществ витамины разрушаются при сильном нагревании. Многие витамины нестабильны и "теряются" во время приготовления пищи или при обработке пищевых продуктов. В начале 20 в. считалось, что ценность пищи определяется главным образом ее калорийностью. Этот взгляд пришлось пересмотреть, когда были описаны первые эксперименты, показывающие, что, если из рациона животных исключить ряд продуктов, у них развиваются болезни, обусловленные пищевой недостаточностью; при этом потребление даже небольших количеств определенных пищевых продуктов или их экстрактов позволяло предотвращать или излечивать подобные заболевания. Оказалось, что благотворное действие таких добавок зависит от присутствия ранее неизвестных веществ, которые встречаются в печени, молоке, зелени и других продуктах, обладающих "защитным" эффектом. Последующие эксперименты привели к открытию как самих этих веществ - витаминов, так и их роли в жизнедеятельности организма. Название "витамины", предложенное в 1911 американским биохимиком польского происхождения К.Функом, вскоре стало общеупотребительным. В ходе экспериментальных исследований витамины были выделены в чистом виде из пищевых продуктов и была определена их химическая структура, что позволило синтезировать и получать их в промышленных масштабах. Искусственно полученные витамины ничем не отличаются от тех, что содержатся в пище. Они используются в качестве лекарств для профилактики болезней пищевой недостаточности и в качестве добавок для повышения питательной ценности пищевых продуктов и кормов сельскохозяйственных животных. Иногда люди принимают слишком много витаминов, полагая, что таким образом улучшают свое здоровье. Для подобного мнения нет никаких оснований, а избыточный прием витаминов A и D может иметь вредные последствия. Витамины подразделяют на два класса: жирорастворимые и водорастворимые. Жирорастворимые витамины растворяются в бензине, эфире и жирах. В отличие от них водорастворимые витамины не растворяются в жирах, но растворимы в воде и спирте. Витамины A, D, E и K - жирорастворимые; все остальные - водорастворимые. Все витамины, кроме витамина D, могут быть получены при хорошо сбалансированном питании из обычных пищевых продуктов. В некоторых случаях, например при беременности, потребность в витаминах возрастает, и тогда рекомендуется принимать витамины дополнительно, используя препараты, например, в виде капсул. Некоторые витамины организм получает не только с пищей, но и за счет "внутрикишечного синтеза", осуществляемого бактериями, которыми всегда изобилует кишечник. Так образуется ряд витаминов группы B и витамин K, однако в количественном отношении их синтез и доступность для использования могут варьировать. У жвачных животных, например, доля витаминов группы B, получаемых за счет бактериального синтеза, весьма заметна. С другой стороны, выяснилось, что кишечные бактерии могут, по-видимому, конкурировать с организмом хозяина за питательные вещества. Так, животные, которых выращивали в стерильных условиях или кормили пищей с добавками антибиотиков, росли быстрее, чем обычно. У человека внутрикишечно синтезируется значительное количество одного из витаминов группы В, а именно биотина, который затем поступает в кровь.
БОЛЕЗНИ, ОБУСЛОВЛЕННЫЕ ВИТАМИННОЙ НЕДОСТАТОЧНОСТЬЮ
Зеленые растения - это живые организмы, способные под действием света производить из простых химических соединений все необходимые им вещества: белки, жиры, углеводы, пигменты и множество других сложных органических соединений. В отличие от растений животные неспособны производить для себя пищевые вещества. Более того, они не могут сами синтезировать и некоторые сложные молекулы - витамины, которые необходимы для поддержания нормального обмена веществ. В тех случаях, когда животные не получают с пищей витамины, у них развиваются болезни, обусловленные витаминной недостаточностью ("авитаминозом"). Большинство диких животных питается достаточно разнообразно, и такие болезни у них не возникают. Человек же часто не склонен к сбалансированному питанию и, имея возможность выбора, предпочитает рафинированную и легкую пищу, часто обедненную витаминами. Для наименее обеспеченных групп населения обычно характерен однообразный (и скудный) пищевой рацион. В результате возникают болезни витаминной недостаточности. Их причины были установлены лишь в 20 в., после чего профилактика этих заболеваний перестала вызывать трудности.
Ксерофтальмия. По свидетельствам современников, на протяжении 19 и в начале 20 в. ксерофтальмия ("сухой глаз") часто наблюдалась у страдающих от недоедания и особенно у голодающих детей. При этом заболевании прекращаются выработка и выделение секрета слезных желез, что вызывает сухость глаз и помутнение роговицы. Заболевание способствует инфекциям, которые могут привести к хроническим нарушениям зрения и даже к слепоте. В 1904 японский врач М.Мори предложил лечить это заболевание рыбьим жиром и печенью цыпленка. Однако его рекомендации не были по достоинству оценены. Во время Первой мировой войны ксерофтальмия широко распространилась среди детей Дании, что было вызвано недостаточностью витамина А. Дело в том, что датчане экспортировали сливочное масло, так что дети в этой стране питались только маргарином и обезжиренным молоком, которые не содержали витамина А. После того как К.Блок показал, что болезнь поддается лечению рыбьим жиром и сливочным маслом, датское правительство сразу же ограничило экспорт масла. Эта мера незамедлительно привела к спаду заболеваемости ксерофтальмией. Вся эта цепь событий вызвала огромный интерес у диетологов. Масло повсеместно стали признавать продуктом "защитного" действия. Многие лаборатории занялись выделением вещества, названного "жирорастворимым веществом A", которое и определяло благотворное действие масла и рыбьего жира. В конце концов, было обнаружено, что один из лучших источников витамина A - жир, выделенный из печени акулы галеус. Один грамм этого жира содержит столько же витамина A, сколько 6 кг масла. Однако собственно витамин A составляет лишь 5% общего веса жира. Вскоре витамин был выделен высоковакуумной перегонкой, а затем химически синтезирован. Тем временем выяснилось, что растительный пигмент бета-каротин тоже предупреждает развитие недостаточности витамина A. Парадокс заключался в том, что каротин - пигмент темно-красного цвета, а высокоэффективные концентраты витамина A из рыбьего жира имеют бледно-желтую окраску. Ученые обнаружили, что в стенке тонкого кишечника животных каротин превращается в витамин A, при этом молекула каротина расщепляется на две одинаковые половины и утрачивает окраску. Каждая из двух половин соответствует молекуле витамина A. Сегодня в маргарин, исходно не содержащий витамин A, его специально добавляют.
Рахит. До 1920 рахитом страдали главным образом дети северных стран. При этом заболевании нарушается процесс минерализации (кальцификации) костной ткани; внешними признаками рахита служат саблевидные голени, вывернутые внутрь колени, деформированные ребра и череп, нездоровые зубы. Особая подверженность рахиту детей заставила обратить внимание на ту роль, которую кальций и фосфор играют в детском возрасте, когда происходит рост костей, состоящих в значительной мере из фосфата кальция. В начале 20 в. было показано, что рахит можно лечить солнечным светом, причем эффективной оказалась лишь ультрафиолетовая часть спектра. Механизм такого воздействия предстояло раскрыть, поскольку очевидно, что сам по себе солнечный свет не может поставлять организму кальций и фосфор. Со временем выяснилось, что лечебное действие оказывают также печень трески (поначалу народное средство) и рыбий жир. Значительному прогрессу в изучении рахита способствовали лабораторные эксперименты с крысами. В 1924 было установлено, что некоторые продукты приобретают способность излечивать рахит при обработке их ультрафиолетовым светом. Эти факты помогли чуть позже обнаружить, что под действием ультрафиолетового света в коже образуется биологически активное вещество, витамин D3, который является основным регулятором обмена кальция и фосфора в костях.
См. также РАХИТ .
Бери-бери. Эта болезнь была так широко распространена в восточных странах до начала 20 в., что считалась одной из главных в мире. У заболевших происходит поражение нервной системы, что приводит к слабости, потере аппетита, повышенной возбудимости и параличу с весьма высокой вероятностью смертельного исхода. Бери-бери часто страдали японские моряки. Только в 1884 японский диетолог Т.Такаки заметил, что заболевания можно избежать, если пищевой рацион моряков сделать более разнообразным и включить в него овощи. В 1890-х годах голландский врач Х.Эйкман обнаружил, что болезнь возникает при употреблении в качестве основной пищи полированного риса и что сходное заболевание, полиневрит, можно вызвать у кур, если кормить их только полированным рисом. Полированный рис получают путем удаления наружных оболочек рисовых зерен. Оказалось, что идущие в отбросы оболочки обладают лечебным действием. После длительных усилий ученым удалось выделить в небольших количествах из дрожжей и рисовых оболочек кристаллическое вещество, которое содержало серу. Это вещество, витамин В1, или тиамин, предупреждало и излечивало бери-бери, а отсутствие его в полированном рисе служило причиной заболевания. Тиамин был исследован химическими методами, и в 1937 его синтезировали. В настоящее время синтетический тиамин добавляют к полированному рису и белой муке.
Пеллагра. Из всех болезней, связанных с витаминной недостаточностью, пеллагра в свое время особенно часто наблюдалась в США. Хотя это заболевание было впервые описано в начале 18 в. в Италии, где и получило свое название, с начала 20 в. оно широко распространилось в США. Чаще всего пеллагрой страдали бедняки из сельских районов, которые питались очень однообразно, в основном кукурузой и жирным мясом. При пеллагре наблюдаются понос, рвота, головокружение, дерматит и другие повреждения кожи, отек языка с развитием изъязвлений преимущественно под ним, а также на деснах и слизистой нижней губы, потеря аппетита, головная боль, депрессия и слабоумие. Страдавших этим заболеванием часто направляли в больницы для умалишенных. В 1937 было установлено, что от пеллагры излечивают никотиновая кислота (ниацин) или ее амид (никотинамид). Хотя никотиновую кислоту выделили из дрожжевого экстракта еще в 1912, до 1937 никто не подозревал, что именно это вещество может быть использовано для профилактики и лечения пеллагры. Изменение рациона питания привело к почти полному исчезновению пеллагры в США.
Мегалобластная анемия. У животных эритроциты и лейкоциты вырабатываются в костном мозге. Поскольку время жизни этих клеток невелико, костный мозг должен постоянно их вырабатывать. Процесс образования новых кровяных клеток носит название гемопоэза. Для того чтобы он шел нормально, необходимо присутствие двух витаминов, и если хотя бы одного из них нет, костный мозг подвергается изменениям (видимым под микроскопом) и вместо эритроцитов начинает производить аномальные клетки - мегалобласты. В результате развивается мегалобластная анемия (см. АНЕМИЯ). Одну из форм этого заболевания называют пернициозной, т.е. злокачественной, анемией, поскольку в отсутствие лечения она всегда имеет смертельный исход. До 1920 не знали ни одного средства лечения пернициозной анемии. Впоследствии, однако, было обнаружено, что в случаях потребления большого количества печени болезнь принимает более легкую форму. Столь же эффективны оказались концентрированные экстракты печени, в особенности при внутримышечном введении: создавалось впечатление, что усвоению этих экстрактов, принятых через рот, что-то мешает. В конце концов причина была найдена: в желудке больных пернициозной анемией не вырабатывался т.н. внутренний фактор, входящий в состав желудочного сока и необходимый для всасывания витамина В12. В настоящее время для лечения этого заболевания назначают инъекции витамина В12, т.е. того витамина, который присутствует в концентрированных экстрактах печени. В начале 1930-х годов установили, что в тропических странах беременные женщины часто страдают мегалобластной анемией, которая не поддается лечению инъекциями концентрированных экстрактов печени. Однако заболевание излечивалось при потреблении сырой печени или экстрактов дрожжей. Анемию удалось искусственно вызвать у обезьян и кур; вещество, пригодное для ее профилактики и лечения, вскоре выделили как из печени, так и из дрожжей, и химически синтезировали. Оказалось, что это вещество - фолиевая кислота - играет значительную роль во многих биохимических процессах, особенно в синтезе нуклеиновых кислот.
Цинга. Многие века моряки и путешественники страдали от цинги - очень тяжелого заболевания, при котором человек сильно худеет, испытывает постоянную усталость и боли в суставах. Болезнь часто заканчивалась смертельным исходом. В 1536 во время зимней экспедиции Жака Картье по Южной Канаде 26 его спутников умерли от цинги. Остальные путешественники вылечились с помощью водного экстракта сосновой хвои - средства, которое использовали индейцы. Двести лет спустя хирург британского флота Дж.Линд показал, что болезнь моряков можно лечить свежими овощами и фруктами, и с 1795 на всех британских кораблях стали добавлять к рациону сок цитрусовых.
См. также ЦИНГА . Прошло еще столетие, прежде чем цингу стали изучать в лабораториях. В 1907 обнаружили, что ее можно искусственно вызвать у морских свинок (у других лабораторных животных заболевание не развивалось), если кормить их только овсяными зернами и отрубями. Излечивать морских свинок от цинги удавалось лимонным соком, однако выделенное из лимонного сока активное вещество в чистом виде быстро разлагалось на воздухе. Только в 1931 был получен в кристаллической форме витамин С, который излечивал морских свинок от цинги. Его удалось выделить из лимонного сока, коры надпочечников и сладкого перца. По своей структуре это вещество, названное аскорбиновой кислотой, оказалось родственным гексозам. Вскоре его синтезировали химическим путем, после чего было быстро налажено дешевое производство нового витамина.
ВИТАМИН A
Витамин A представляет собой жирорастворимый спирт бледно-желтого цвета, который образуется из красного растительного пигмента бета-каротина (провитамина A). В организме животных и человека происходит превращение бета-каротина в витамин A. Поэтому каротин можно рассматривать как растительную форму витамина A. И витамин A, и бета-каротин - ненасыщенные соединения, они легко окисляются на воздухе и разрушаются. Раньше основным источником концентрированного витамина A служил рыбий жир, в основном из печени акулы. В настоящее время этот витамин синтезируют химическим путем. Активность витамина A определяют биологически, по его способности стимулировать рост крыс, испытывающих дефицит этого витамина. Одна единица витамина A ежедневно - доза, достаточная для выживания таких крыс и их медленного роста. В одном грамме витамина A содержится около трех миллионов единиц. Физиологическая роль витамина A состоит в поддержании нормального состояния прежде всего эпителиальных тканей (в том числе слизистых оболочек), а также нервной и костной тканей. От витамина A зависит способность видеть при слабом освещении. Дело в том, что важным компонентом сетчатки является производное витамина А, родопсин, или зрительный пурпур, который принимает участие в зрительном процессе. Недостаточность витамина A ведет к утрате родопсина, что, в свою очередь, вызывает ночную ("куриную") слепоту, т.е. неспособность видеть в сумерках. Благодаря своей роли в деятельности сетчатки витамин А получил название "ретинол" (от retina, сетчатка). Ежедневная потребность взрослого человека в витамине A - ок. 5000 единиц. При продолжительном приеме более высоких доз он оказывает токсическое действие. Важными источниками бета-каротина служат зелень, морковь и другие зеленые и желтые овощи. Витамин A содержится в рыбьем жире, яичном желтке и масле. В печени пресноводных рыб встречается другая форма витамина A - витамин A2.
ВИТАМИН D
Витамин D структурно связан со стероидными соединениями - классом жирорастворимых веществ, входящих в состав животных тканей, грибов и различных растений. Витамин D - это семейство соединений, каждое из которых образуется из определенного стерина, своего предшественника. Стерины (их называют также стеролами) представляют собой органические вещества, в структуру которых входит несколько сочлененных колец, образованных атомами углерода; под действием ультрафиолетового света одно из колец раскрывается, и стерин превращается в витамин D. Эта уникальная реакция протекает в коже позвоночных, но несвойственна растениям. Поэтому витамин D не может быть получен с растительной пищей, а образуется под действием прямого солнечного света в животном организме и может запасаться в нем (главным образом в печени, а также в жировой ткани). Одна из его форм - витамин D2, или эргокальциферол, - образуется при облучении ультрафиолетовым светом эргостерина, природного стерина, получаемого в больших количествах из дрожжей. У животных витамин D представлен в основном в форме витамина D3, или холекальциферола. Он более активен, чем витамин D2, и образуется при облучении 7-дегидрохолестерина. Активность обеих форм витамина определяют по их способности вызывать отложение минеральных веществ (в основном фосфата кальция) в костях молодых крыс. Витамин D имеется в жирах, выделенных из печени костных рыб. Витамин D3 увеличивает всасывание кальция в тонком кишечнике. Точнее говоря, эту функцию выполняют его производные, образующиеся в организме. (Эти метаболиты сейчас рассматриваются как стероидные гормоны, а сам витамин D - как гормон, образующийся в коже.) Наиболее активным из производных является 1,25-дигидроксихолекальциферол [[сокращенно: 1,25-(OH)2D3]]; он вырабатывается в почках из 25-гидроксихолекальциферола [], образующегося в печени непосредственно из витамина D3. По-видимому, это высокоактивное производное витамина D3 индуцирует синтез кальций-связывающего белка в стенке тонкого кишечника. Витамин D2 также превращается в организме в вещество со сходным механизмом действия, 1,25-дигидроксиэргокальциферол []. Поскольку витамин D регулирует процесс усвоения кальция и фосфора, он играет ключевую роль в нормальном формировании костей и зубов. Нужнее всего он беременным женщинам и детям. Если растущему организму, у которого только формируются кости, не хватает витамина D, содержание кальция и фосфора в крови падает ниже нормального уровня, и кости размягчаются и деформируются. В этом случае дети страдают рахитом, а у беременных женщин развивается аналогичное заболевание, называемое остеомаляцией. Открытие витамина D позволило почти полностью победить рахит во многих северных странах, где световой день зимой очень короток и витамина D в коже образуется мало; в настоящее время детям повсеместно назначают витамин D. Обычные оконные стекла не пропускают ультрафиолетовый свет, необходимый для образования витамина D. Один грамм витамина D соответствует 40 млн. единиц активности. Ежедневная потребность как детского организма, так и беременных и кормящих женщин - 400 единиц. Известны случаи, когда для лечения некоторых форм артрита назначали гораздо большие дозы. Однако в высоких дозах витамин D может оказывать токсическое действие.
ВИТАМИН E
Витамин E имеет и другое название - токоферол, что по-гречески означает "рождение младенца" и указывает на роль этого витамина в репродукции. Известно четыре формы токоферола - альфа, бета, гамма и дельта. Все эти близкородственные соединения сходны по химической структуре с хлорофиллом - зеленым пигментом растений. По-видимому, наиболее активен альфа-токоферол. Витамин E запасается главным образом в жировой ткани.
В концентрированном виде токоферолы получают путем высоковакуумной перегонки природных растительных масел. Основными природными источниками витамина E служат зеленые листья растений, а также хлопковое, арахисовое, соевое и пшеничное масла. Хорошим источником этого витамина является также маргарин, приготовленный из растительного масла. Промышленностью выпускается и синтетический альфа-токоферол. Биологическое определение витамина E проводят на беременных крысах. Получая корм с недостатком токоферола, крысы не могут вносить плод до конца срока, и тот либо рождается мертвым, либо рассасывается в матке. Другая функция витамина E состоит в поддержании мышечного тонуса у молодых животных. Витамин E является антиоксидантом и, в частности, предотвращает окисление и разрушение витамина A. У человека, в особенности у детей, недостаточность витамина E приводит к быстрому разрушению эритроцитов и анемии. Связь между витамином E и репродукцией человека не доказана. Рекомендованная ежедневная доза витамина E в пересчете на альфа-токоферол составляет 10 мг.
ВИТАМИН K
Витамин K существует в природе в двух формах: K1 и K2. Обе формы жирорастворимы. К настоящему времени химически получено много других форм витамина K, в том числе и водорастворимых. Самая простая форма витамина K - синтетический продукт менадион (2-метил-1,4-нафтохинон), который представляет собой желтоватое масло с резким вкусом. Витамин K называют также антигеморрагическим витамином: считается, что он индуцирует образование в печени протромбина - белка, участвующего в свертывании крови. При недостаточности витамина K время свертывания крови значительно увеличивается по сравнению с нормой, и человек страдает частыми кровотечениями и кровоизлияниями. Витамин K1 содержится в зеленых листьях растений, а витамин K2 производят бактерии, населяющие в норме кишечник человека, например кишечная палочка (Escherichia coli). По-видимому, важную роль в растворении природного витамина K в кишечнике играет желчь: в ее отсутствие витамин не всасывается. В связи с этим недостаточность витамина K может возникнуть в результате нарушения оттока желчи (при обтурационной, или механической, желтухе). Здоровый организм, как правило, удовлетворяет свои потребности в витамине K при сбалансированном питании. Однако беременным женщинам незадолго до родов и новорожденным рекомендуется дополнительное введение этого витамина для того, чтобы повысить содержание протромбина в крови новорожденных и тем самым предупредить развитие у них кровоизлияний (в случае родовых травм) и кровотечений. Уже через несколько дней после рождения организм младенца начинает получать свой собственный витамин K из пищеварительного тракта. Вероятно, ежедневная потребность в витамине K не превышает доли миллиграмма.
ВИТАМИНЫ ГРУППЫ B
На заре изучения витаминов было обнаружено, что в ряде природных продуктов (дрожжах, печени и молоке) содержится водорастворимая фракция, необходимая для нормальной жизнедеятельности. Ее назвали водорастворимой фракцией B. Вскоре было показано, что она содержит целый ряд химических соединений, в том числе тиамин, рибофлавин и ниацин. Бесконечное разнообразие биохимических реакций, протекающих в организме, осуществляется под действием особых белков - ферментов (см. также ФЕРМЕНТЫ). Для любой химической реакции, протекающей в организме, нужен свой фермент. Многие ферменты (особенно те, что используются в процессах окисления питательных веществ и накопления полезной энергии) проявляют активность только присутствии витаминов группы B (или их производных), которые служат т.н. коферментами. Если организм не получает какого-то из этих витаминов с пищей, фермент не может работать, и соответствующие химические реакции не идут.
ТИАМИН
Тиамин (витамин B1) - соединение сложной химической структуры, содержащее серу, которая и придает ему характерный неприятный запах. Тиамин разрушается при нагревании в присутствии влаги; в сухом виде он стабилен. В процессе приготовления пищи или консервирования продуктов содержание тиамина в них уменьшается, но связано это главным образом не с нагреванием, а с тем, что он легко вымывается. В природе тиамин широко распространен, но в большинстве пищевых продуктов его содержание невелико. Современные вкусы и способы приготовления пищи привели к тому, что люди стали получать меньше тиамина. Поэтому в муку теперь вносят витаминные добавки. Много тиамина содержится в дрожжах, арахисе, горохе и других бобовых культурах, постной свинине, отрубях и проростках злаковых растений. Содержание тиамина определяют с помощью тиохромного теста, основанного на измерении интенсивности флуоресценции тиохрома - производного тиамина. Тиамин играет важную роль в ферментной системе, обеспечивающей использование углеводов клетками. При недостатке тиамина углеводы в тканях организма "сгорают" не полностью; при этом накапливаются токсичные продукты, что и может служить причиной бери-бери - болезни тиаминной недостаточности. Дефицит тиамина иногда возникает при алкоголизме - как результат неправильного питания. Взрослым рекомендуется ежедневно потреблять от 1 до 1,5 мг тиамина. В лечебных целях тиамин назначают в значительно больших дозах без заметных побочных эффектов.

РИБОФЛАВИН
Рибофлавин (витамин B2) - оранжевый пигмент, придающий желтоватую окраску сырому яичному белку и молочной сыворотке. Он значительно более устойчив к нагреванию, чем тиамин, но разрушается под действием света. При выдерживании молока на свету в течение двух часов большая часть рибофлавина разрушается. Он должен регулярно поступать с пищей, причем довольно много рибофлавина содержится в печени, дрожжах, яйцах, зеленых листьях растений и молоке. В промышленных масштабах этот витамин получают методом микробиологического синтеза или химическим путем. Способ его определения по флуоресценции напоминает тиохромный тест для тиамина. Как и тиамин, рибофлавин играет важную роль в некоторых ферментных системах, обеспечивающих использование клетками питательных веществ. При недостаточности рибофлавина кожа вокруг ноздрей и рта покрывается трещинами и изъязвляется. Кроме того, страдают глаза: возникает непереносимость яркого света (фотофобия). Рибофлавин должен присутствовать и в корме животных; в случае недостаточности этого витамина цыплята не вылупляются, а у кур развивается паралич стопы. Согласно рекомендациям, человек должен получать примерно 1,2-1,7 мг рибофлавина в день.
НИАЦИН
Ниацин (никотиновая кислота, витамин PP) и ниацинамид (никотинамид) - два взаимозаменяемых витаминных вещества. В лечебной практике ниацинамид часто предпочтительнее ниацина, который вызывает временное покраснение кожи. При приготовлении и переработке пищевых продуктов ниацин, как правило, не разрушается. В значительном количестве содержится в дрожжах, печени, рыбе и постном мясе. Промышленное производство витамина основано на химическом синтезе. Ниацин и ниацинамид получают в больших количествах для использования в качестве добавок к пищевым продуктам и лекарственным средствам. Так, их добавляют в белую муку, из которой пекут "витаминизированный" хлеб. Ниацинамид входит в состав двух коферментов, НАД и НАДФ (см. МЕТАБОЛИЗМ), играющих огромную роль в метаболизме углеводов. Им лечат пеллагру, но для полного выздоровления необходим переход на полноценное питание, включающее не только этот, но и другие витамины группы В. Ниацин в организме образуется из триптофана - аминокислоты, входящей в состав белков молока, мяса и яиц. Однако полученного таким путем ниацина может быть достаточно лишь при значительном содержании триптофана в пищевых продуктах. Ежедневная потребность взрослого организма в ниацине составляет 20 мг.
ФОЛИЕВАЯ КИСЛОТА
Фолиевая, или птероилглутаминовая, кислота - пигмент желтого цвета, плохо растворимый в воде. По химической структуре представляет собой соединение глутаминовой и парааминобензойной кислот с желтым пигментом птерином. Своим названием птерин обязан крыльям бабочек, которым он придает окраску: греческое слово pteron означает крыло. Фолиевая кислота содержится в печени, дрожжах, зелени, яйцах и сое; кроме того, ее получают химическим путем. Содержание витамина определяют микробиологическим методом, причем в исследуемом образце кислоту предварительно высвобождают с помощью ферментов из тех соединений, в которых она находится в связанной форме. Фолиевая кислота играет важную роль в синтезе нуклеиновых кислот и в процессах деления и роста клеток, особенно в образовании клеток крови. В связи с этим при недостаточности фолиевой кислоты содержание эритроцитов и лейкоцитов в крови становится значительно ниже нормы, и эритроциты увеличиваются в размерах. Это заболевание, которое носит название фолиеводефицитной (мегалобластной) анемии, может возникать вследствие неполноценного питания, при беременности или тяжелом нарушении процессов всасывания; как правило, оно поддается лечению фолиевой кислотой. Ежедневная потребность в фолиевой кислоте составляет примерно 0,4 мг; терапевтические дозы существенно выше.
ВИТАМИН B6
Как и ниацин, витамин B6 является производным пиридина. В природе встречаются три его биологически активные формы: пиридоксин, пиридоксаль и пиридоксамин. Богаты витамином B6 дрожжи, печень, постное мясо и цельные зерна злаковых растений. Концентрацию в пищевых продуктах определяют микробиологическим методом. Биологическая функция этого витамина связана с обменом аминокислот и утилизацией белков в тканях. У маленьких детей из-за неправильного питания иногда развивается недостаточность витамина B6, которая сопровождается конвульсиями. У животных подобная недостаточность вызывает анемию и паралич, а у крыс - и острый дерматит (воспаление кожи).
ПАНТОТЕНОВАЯ КИСЛОТА
Пантотеновая кислота - азотсодержащая органическая кислота. Основные ее источники - печень, дрожжи, яичный желток, капуста брокколи; ее также получают химическим путем. Пантотеновая кислота является частью молекулы кофермента A, участвующего во многих биохимических процессах, в том числе в биологическом синтезе жиров и стероидов, с одной стороны, и в реакциях распада жиров - с другой. Ацетил-кофермент A играет ключевую роль в цикле трикарбоновых кислот и метаболизме углеводов. Каких-либо болезней человека, связанных с недостаточностью пантотеновой кислоты, не описано. Но у экспериментальных животных с помощью специальной диеты удавалось вызвать ярко выраженную недостаточность, сопровождающуюся дерматитом, поносом, перерождением нервной ткани и поседением шерсти.
БИОТИН
Биотин - сложное органическое соединение, в состав которого входят атомы серы и азота. Содержится в печени, яичном желтке, дрожжах и других пищевых продуктах. Сырой яичный белок обладает уникальным свойством: он связывает находящийся в пищеварительном тракте биотин и делает его недоступным для организма. У экспериментальных животных можно вызвать биотиновую недостаточность, если добавлять им в корм значительное количество сырого белка. Биотин не только поступает в организм с пищей, но и синтезируется кишечными бактериями. У экспериментальных животных недостаточность биотина проявляется тяжелым дерматитом, симптомами паралича и выпадением шерсти.
ХОЛИН
Холин обычно относят к витаминам группы В, хотя он синтезируется в организме, и в тканях его содержание гораздо выше, чем других витаминов (в сырой печени, например, примерно 0,5% веса органа). С химической точки зрения холин представляет собой соединение азота, похожее на аммиак. В наибольших количествах содержится в таких продуктах, как яичный желток, печень, постное мясо, рыба, соя и арахис. Холин легко получить химическим путем. В организме он участвует в транспорте жиров и в построении новых клеток. Наряду с фосфорной кислотой и жирными кислотами он входит в состав лецитина. Жиры в форме лецитина переносятся кровотоком из печени в другие ткани организма. При недостаточном поступлении холина с пищей в печени накапливается жир, что может служить фактором, предрасполагающим к циррозу печени. Производное холина - ацетилхолин - играет важную роль в нервной деятельности. Ежедневная потребность человека в холине остается неизвестной, но, по-видимому, она довольно высока. В организме млекопитающих холин образуется из аминокислоты метионина.
ВИТАМИН B12
Недостаточность витамина B12 вызывает пернициозную анемию - болезнь, которой чаще всего страдают пожилые люди. Этот витамин - единственное из биологически активных соединений, в состав которого входит кобальт, отсюда его другое название - кобаламин. Он был выделен в двух формах - B12a и B12b, обладающих одинаковой активностью. В пищевых продуктах растительного происхождения витамин B12 отсутствует; в отличие от других витаминов группы B его синтезируют не растения, а некоторые бактерии и почвенные грибы. Из природных источников был выделен кофермент, в состав которого входит витамин B12. В очень небольших количествах (примерно одна часть на миллион) этот витамин содержится в печени, постном мясе, рыбе, молоке и яйцах. Его недостаточность у молодых животных приводит к замедлению роста и высокой смертности. Как и фолиевая кислота, витамин B12 принимает участие в синтезе нуклеиновых кислот. Его концентрацию измеряют микробиологическим методом, а промышленное получение осуществляется путем микробиологического синтеза.
ВИТАМИН С
Витамин С - аскорбиновая кислота, или противоцинготный витамин, - по своей структуре сходен с глюкозой, из которой его и получают в промышленности. В растворе витамин С нестабилен, особенно в щелочной среде. При длительном приготовлении пищи может разрушаться. Витамина С много в свежих фруктах и овощах. У человека, человекообразных обезьян, морских свинок, плодоядных летучих мышей (семейство крылановых) и некоторых птиц витамин С, играющий, по-видимому, роль кофермента, должен поступать в организм с пищей. Другие животные могут вырабатывать его сами. Ежедневная потребность в этом витамине у здоровых людей составляет 30-60 мг.

С.П. Козодаев

Ужгородский национальный университет

Лекарства человек принимает, когда он болен, чтобы выздороветь.
Витамины человек должен получать постоянно, чтобы не заболеть.
Профессор В.Б. Спиричев

Витамины — биологически активные соединения — играют ведущую роль в регуляции обменных процессов в организме. Тема эффективности и неэффективности витаминов обросла массой мифов и вымыслов. Сегодня мы попытаемся разрушить часть мифов о витаминах.

Из чего состоят витамины? Как образуются витамины?

Химически витамины представляют собой группу различных низкомолекулярных веществ (табл. 1). В организме человека витамины не синтезируются или синтезируются в недостаточном количестве (только отдельные из них могут быть синтезированы в организме из провитаминов: например, витамины группы D3 образуются в коже от ультрафиолетового облучения; никотинамид (витамин РР) может синтезироваться из аминокислоты траптофана; фолиевая кислота образуется микроорганизмами в кишечнике). Однако для обеспечения метаболических процессов витамины должны поступать в организм из внешней среды. Биологическая функция витаминов состоит в каталитических особенностях, которые они приобретают в составе коферментных систем, регулирующих важнейшие ферментативные процессы обмена белков, жиров, углеводов, минеральных веществ и обеспечения трансформации энергии.

От чего зависит потребность в витаминах?

Потребность в витаминах зависит от возраста, пола, физической активности, наличия хронических заболеваний, уровня обмена веществ (табл. 2). Необходимо помнить, что начиная с середины осени и до лета в Украине очень сложно, практически невозможно, восполнить среднесуточную дозу витаминов подбором диеты. Это время года оптимально подходит для применения профилактических витаминных комплексов, содержащих среднесуточные, безопасные дозы витаминов.

Нужны ли беременным дополнительные витамины?

Потребность в витаминах у женщин во время беременности (табл. 3) заслуживает особого внимания — она возрастает в 1,5 раза. Будущие матери не только не получают дополнительного количества витаминов, но часто испытывают их умеренный или глубокий дефицит. Для разных витаминов он может колебаться от 45 до 100%. Наиболее распространен у беременных женщин дефицит витаминов Вб (100%), B1 (96%), фолиевой кислоты (77%), витамина С (б4%). Самый оптимальный вариант — обеспечить организм будущей матери витаминами еще до зачатия ребенка и на протяжении всего периода беременности и кормления грудью. Это убережет малыша от многих неприятностей и осложнений, например, от врожденных аномалий развития, гипотрофии, недоношенности, нарушений физического и умственного развития. Меньше проблем со здоровьем будет и у самой родившей женщины. Подсчитано, что во время беременности и лактации потребность в витаминах у женщин возрастает в 1,5 раза. Будущие матери испытывают повышенную потребность в витаминах, прежде всего, A, C, B1, B6, в фолиевой кислоте.

Содержит ли пища в полной мере все необходимые витамины?

Основным источником витаминов для человека является пища (табл. 4). Содержание витаминов в пищевом рационе может меняться и зависит от разных причин: от сорта и вида продуктов, способов и сроков их хранения, характера технологической обработки пищи, выбора блюд и привычек в питании. Важную роль играет состав пищи. При преобладании в пищевом рационе углеводов организму требуется больше витаминов B1, B2 и С. При недостатке в пище белка снижается усвоение витамина B2, никотиновой кислоты, витамина С, нарушается преобразование каротина в витамин А. Кроме этого, к снижению поступления витаминов в организм может приводить употребление высокорафинированных продуктов (просеянная белая мука, белый рис, сахар и др.), из которых все витамины удалены в процессе обработки. Другую проблему недостаточной обеспеченности витаминами рациона питания, особенно в городах, создает употребление в пищу консервированных продуктов.

Гиподинамия, диетические разгрузки и гиповитаминоз. Яблоко в день — проблемы не решает

Недостаточное поступление витаминов с пищей — общая проблема всех цивилизованных стран. Она возникла как неизбежное следствие снижения энерготрат и соответствующего уменьшения общего количества пищи, потребляемой современным человеком. Физиологические потребности нашего организма в витаминах и микроэлементах, в том числе биоантиоксидантах, сформированы всей предшествующей эволюцией вида, в ходе которой обмен веществ человека приспособился к тому количеству биологически активных веществ, которые он получал с большими объемами простой натуральной пищи, соответствующими столь же большим энерготратам наших дедушек и прапрабабушек. В течение последних двух — трех десятилетий средние энерготраты человека снизились в 2-2,5 раза. Во столько же уменьшилось или должно было уменьшиться потребление пищи, иначе неизбежны переедание, избыточный вес, а это прямой путь к диабету, гипертонической болезни, атеросклерозу и другим «прелестям» цивилизации. С одной стороны, в связи со значительным снижением энерготрат, мы должны столь же существенно уменьшить количество потребляемой пищи как источника энергии. Иначе — переедание, избыточный вес и все связанные с этим «прелести». Но пища не только источник энергии, она одновременно источник витаминов и микроэлементов. Поэтому уменьшая общее количество потребляемой пищи, мы неизбежно обрекаем себя на витаминный голод.

Каковы причины дефицита витаминов?

Могут ли витамины взаимодействовать между собой? Можно ли их бездумно сочетать или смешивать? Цена вопроса.

Витамины при их комбинированном применении могут изменять свое биологическое действие. Установлено взаимодействие между витаминами С, B1 и B2. Увеличение дозы вводимого витамина С снижает потребность организма в витамине B2. При недостатке в пище витамина B2 снижается уровень витаминов С и B1 в тканях. В то же время обнаружен антагонизм между витаминами B1 и B6, которые переходят в активную форму путем фосфорилирования. Кроме того, выявлена взаимосвязь обмена витаминов B6, B12 и витамина С. Многочисленные исследования доказывают отчетливый синергизм при сочетании витаминов С и Р Например, витамин С плохо «уживается» с медью, витамин Е теряет активность в присутствии избытка железа и т.д. Поэтому так важно при выборе поливитаминного препарата оценивать его состав, сбалансированность и соответствие содержания компонентов рекомендуемой суточной норме. Переизбыток того или иного компонента в поливитаминном препарате может привести к противоположным по отношению к ожидаемым результатам. Особенно это касается минералов, токсические дозы которых лишь немного отличаются от терапевтических. Опасность может таить в себе и любимый всеми витамин С. Установлено, что аскорбиновая кислота в процессе окисления приводит к образованию двух токсичных метаболитов — дегидроаскорбиновой и дикетогулоновой кислот. Чем больше доза потребляемого витамина С, тем выше содержание в организме ее окисленных форм. В недавних исследованиях, проведенных в Национальном институте здоровья США, страны, опережающей все другие государства по количеству потребляемых витаминных препаратов, было показано, что человеческий организм не в состоянии усваивать более 100 мг витамина С ежедневно.

У витаминов может быть совместимость или несовместимость. Если не вникать в фармакологические и химические тонкости, то можно сказать, что витамины как отдельные компоненты способны усиливать или, наоборот, убивать действия друг друга. Избежать подобных негативных эффектов помогают новые технологии изготовления лекарств: витамины и минералы заключают в разные оболочки и только потом соединяют их в витаминно-минеральный комплекс. Обратите внимание, что цена подобных препаратов всегда высока, но это оправдано!

Опасна ли передозировка витаминов?

Не бойтесь «перевитаминизироваться»! Поливитаминные комплексы не накапливаются в организме, если принимать их в терапевтических дозах. Каждый день они выводятся обычным путем. Только витамины А, Д и Е могут синтезироваться и скапливаться в организме, в основном в печени.

Влияет ли несбалансированное питание на потребность в витаминах?

При несбалансированном питании потребность в витаминах и минералах существенно изменяется (табл. 6) От чего зависит выраженность клинической манифестации витаминной недостаточности?

Выраженность клинической манифестации зависит от многих факторов, в первую очередь от степени уже имеющегося дефицита. Ярко выраженные клинические проявления отмечаются при глубокой недостаточности витаминов (авитаминозы). Умеренные или слабовыраженные гиповитаминозы, которые не имеют клинически манифестных симптомов, также могут проявляться различными патологическими состояниями (табл. 5, 6).

Влияет ли курение на состав витаминов?

Никотин вызывает множество проблем, одна из них — это «утечка» из организма витамина С, причем теряется его немало: 25 мг на каждую выкуренную сигарету Если посчитать, сколько его унесет пачка, выходит — полграмма! Витамин С выполняет множество функций. Самое главное — без него не обходятся окислительно-восстановительные реакции. Он повышает прочность и эластичность кровеносных сосудов, блокирует токсические вещества в крови, делает зубы прочными, укрепляет десны, т.е., безусловно, задерживает процессы старения.

Соответствуют ли витамины в поливитаминных препаратах «живым» витаминам? Насколько они эффективны? Могут ли они иметь примеси? Все витамины, которые выпускаются медицинской промышленностью, полностью идентичны «природным», присутствующим в натуральных продуктах питания, по химической структуре и по биологической активности. Витамины выделяют из природных источников или получают из природного сырья. Так, витамины В2 и В12 получают в фармацевтическом производстве, как и в природе, за счет синтеза микроорганизмами, витамин С делают из природного сахара — глюкозы, витамин Р выделяют из черноплодной рябины, кожуры цитрусовых или из софоры и т.д. Витамины в таблетках, кроме прочего, хранятся лучше, чем, скажем, овощи в холодильнике, и гарантируют высокую чистоту вещества. И еще один важный момент: в поливитаминных комплексах витамины находятся в таком виде, в котором легче всего усваивается организмом. Синтетические витамины в отличие от веществ природного происхождения не вызывают аллергии и других побочных реакций. Все витамины, которые выпускаются медицинской промышленностью, полностью идентичны «природным», присутствующим в натуральных продуктах питания, по химической структуре и по биологической активности. Их соотношение в поливитаминных препаратах профилактической направленности и витаминизированных продуктах наиболее точно соответствует физиологическим потребностям человека, чего далеко нельзя сказать о большинстве отдельно взятых пищевых продуктов.

Каковы показания для витаминотерапии?

Восполнение дефицита витаминов при клинических проявлениях гиповитаминозов, а также:

  • при длительном заболевании, у часто- и длительно болеющих
  • в послеоперационном периоде
  • при сахарном диабете
  • при анорексии или булимии
  • у лиц преклонного возраста
  • у курящих
  • у подростков
  • у лиц, соблюдающих диеты
  • у лиц, злоупотребляющих алкоголем
  • у лиц, работающих во вредных условиях

Каков состав поливитаминов?

Витаминные препараты отличаются по составу: Витамины первого поколения состоят из одного компонента. Примером таких препаратов могут быть аскорбиновая кислота, витамины Е, А, D. Они в основном назначаются врачами в лечебных целях по симптоматике. Например, при ухудшении зрения назначают витамин А, для профилактики и комплексного лечения рахита — витамин D. Витамины второго поколения представляют поливитаминные комплексы с добавлением минералов. Они имеют ряд преимуществ перед своими предшественниками и значительно лучше усваиваются в сочетании с минеральными веществами. Например, известно, что для нормального усвоения кальция необходимо наличие в препарате витамина D и магния в эквивалентных количествах. Витамины третьего поколения содержат в своем составе не только витамины, микро- и макроэлементы, но и лекарственные растения (экстракт шиповника, пресноводную водоросль спирулину), ферменты (лактозу), фруктовые соки, что значительно расширяет спектр их действия. Поливитамины последнего поколения — это химически чистые соединения, гармонично сбалансированные между собой и лишенные недостатков, присущих растительным и животным препаратам. Сейчас в продаже можно встретить большое разнообразие различных витаминов. Для удобства их производят в виде таблеток, драже, леденцов, капсул, порошков и в жидком виде. По мнению специалистов, наиболее удачная форма выпуска — капсулы. При такой форме выпуска снижается вероятность их взаимной нейтрализации. Продвигаясь по кишечному тракту; капсула постепенно теряет слой за слоем, и витамины один за другим (а не все сразу) всасываются внутрь.

Как выбрать поливитаминный препарат?

При выборе витаминов следует обратить внимание, во-первых, на состав поливитаминного комплекса. Необходимо, чтобы в состав препарата входили все жизненно важные для человека витамины. Во-вторых, нужно учитывать применяемые дозы витаминов. Они должны соответствовать суточным потребностям организма, а не быть избыточными. И, наконец, предпочтение следует отдавать поливитаминным препаратам без добавления минералов и микроэлементов, так как их взаимоотношения при совместном введении в организм до конца не исследованы. Среди многих современных поливитаминных препаратов выигрышное положение занимает отечественный поливитаминный комплекс КОМПЛЕВИТ . Поливитаминный комплекс КОМПЛЕВИТ , содержащий весь спектр необходимых витаминов в дозах, максимально приближенных к суточной потребности организма, позволяет избежать риска гипервитаминозов даже при достаточно длительном приеме препарата взрослыми, подростками и детьми (табл. 7).

Эффективными могут быть только импортные поливитамины?

Препарат КОМПЛЕВИТ представляет собой комплекс витаминов группы В в сочетании с витамином С и рекомендуется при стрессах, в период повышенных умственных и физических нагрузок; при беременности, после антибиотикотерапии. Состав: каждая капсула КОМПЛЕВИТ (№20) содержит: кислоты аскорбиновой (витамина С) — 100 мг, тиамина хлорида (витамина В) — 15 мг, рибофлавина (витамина В2) — 15 мг, пиридоксина гидрохлорида (витамина В6) — 10мг, цианокобаламина (витамина В12) — 0,002 мг, кальция пантотената (витамина В 3) — 25 мг, кислоты фолиевой (витамина Вс) — 025 мг, никотинамида (витамина РР) — 50 мг.

Показания к применению. Профилактика и лечение гипо- и авитаминозов, вызванных недостаточным поступлением или повышенной потребностью в витаминах: стрессы, хронические заболевания, в период повышенных умственных и физических нагрузок, при активном занятии спортом, в период восстановления после тяжелых заболеваний, после антибиотико- и химиотерапии, до и после хирургических операций, при нерегулярном и однообразном питании, а также при различных диетах, в период беременности и лактации, для улучшения обмена веществ и общего состояния всех возрастных групп, при лечении больных атеросклерозом, ишемической болезнью сердца, имеющих заболевания печени (в комплексе с другими средствами).

Способ применения и дозы препарата КОМПЛЕВИТ. Принимают внутрь во время еды. Взрослые, если нет других указаний врача, принимают по 1 капсуле 2 раза в день, курс лечения — 20 дней. При необходимости через 2 месяца проводят повторный курс.

Как принимать витамины после пятидесяти?

С возрастом в организме человека происходят изменения, которые требуют перестройки питания. У пожилых людей снижена всасывательная способность пищевых ингредиентов и энергетический обмен. Кроме того, хронические заболевания, прием лекарственных препаратов приводят к тому, что человек регулярно недополучает необходимые ему вещества, в первую очередь, витамины. С другой стороны, многочисленные медицинские и социальные исследования свидетельствуют о том, что пожилые люди, регулярно принимающие витаминные препараты, ведут более активный образ жизни.

Живучесть предрассудков и эффективность витаминопрофилактики

Прием поливитаминных препаратов и обогащенных витаминами продуктов питания, обеспечивающих организм всеми необходимыми витаминами в количествах, соответствующих физиологической потребности, в наибольшей степени удовлетворяет требованиям формулы сбалансированного питания, чего нельзя сказать о всякого рода односторонних «яблочных», «морковных», «ореховых» и иных диетах, не говоря уже о «рекомендациях» питаться ботвой, подорожником и одуванчиками. Массовый опыт широкого профилактического применения поливитаминных препаратов свидетельствует, что их регулярный прием — надежное и эффективное средство обеспечения организма витаминами независимо от условий питания и времени года. Восполнение витаминного дефицита нормализует обмен веществ, нарушенный из-за недостатка витаминов, улучшает самочувствие, физическую и умственную работоспособность, укрепляет здоровье, снижает заболеваемость, способствует продлению активного долголетия. О высокой эффективности регулярного приема витаминных и витаминоминеральных комплексов свидетельствует огромный мировой и отечественный опыт. По данным медицинских страховых компаний США и Англии, более 60% населения этих стран принимают те или иные «витаминные» таблетки. Среди детей и беременных женщин число принимающих витамины превышает 90%. Исследования, проводимые Институтом питания, свидетельствуют о том, что количество лиц, более или менее регулярно принимающих витамины «из аптеки», не превышает 3-5%. В странах Закавказья и Средней Азии на 1 жителя приходится не более одной таблетки в год. Внедряя традиции в преодолении хронических дефицитов витаминов, возможно создание огромного резерва крепкого здоровья нации.

Витамины – это большая группа органических соединений разной химической природы. Их объединяет одна важная черта: без витаминов невозможно существование человека и других живых существа.

Еще в древности люди предполагали, что для профилактики некоторых заболеваний достаточно внести определенные коррективы в рацион питания. Так, например, в Древнем Египте лечили «куриную слепоту» (нарушение сумеречного зрения), употребляя в пищу печень. Много позже было доказано, что данная патология обусловлена недостатком витамина А, который в большом количестве присутствует в печени животных. Несколько веков назад в качестве средства от цинги (болезнь обусловлена гиповитаминозом С) было предложено вводить в рацион кислые продукты растительного происхождения. Метод оправдал себя на 100%, поскольку в обычной квашеной капусте и в цитрусовых присутствует много аскорбиновой кислоты.

Зачем нужны витамины?

Соединения данной группы принимают самое активное участие во всех видах обменных процессов. Большая часть витаминов выполняет функцию коферментов, т. е. работают в качестве катализаторов энзимов. В продуктах питания эти вещества присутствую в довольно небольших количествах, поэтому все они отнесены к группе микронутриентов. Витамины необходимы для регуляции жизнедеятельности через жидкие среды организма.

Изучением данных жизненно важных органических соединений занимается наука витаминология, находящаяся на стыке фармакологии, биохимии и гигиены питания.

Важно: витамины совершенно не обладают калорийностью, поэтому не могут служить источником энергии. Структурными элементами, необходимыми для формирования новых тканей, они также не являются.

Гетеротрофные организмы получают данные низкомолекулярные соединения, главным образом, с пищей, но некоторая их часть образуется в процессе биосинтеза. В частности, в кожных покровах под действием ультрафиолетового излучения образуется витамин D, из провитаминов-каротиноидов – А, а из аминокислоты триптофана – РР (никотиновая кислота или ниацин).

Обратите внимание : бактерии-симбиоты, обитающие на слизистой оболочке кишечника в норме синтезируют достаточный объем витаминов В3 и К.

Суточная потребность в каждом отдельно взятом витамине у человека совсем невелика, но если уровень поступления значительно ниже нормы, то развиваются различные патологические состояния, многие из которых представляют весьма серьезную угрозу для здоровья и жизни. Патологическое состояние, обусловленное дефицитом определенного соединения данной группы, называется гиповитаминозом.

Обратите внимание : авитаминоз предполагает полное прекращение поступления витамина в организм, что наблюдается довольно редко.

Классификация

Все витамины делятся на 2 большие группы в соответствии со своей способностью растворяться в воде или жирных кислотах:

  1. К водорастворимым относятся все соединения группы В, аскорбиновая кислота (С) и витамин Р. Они не имеют свойства накапливаться в значительных количествах, поскольку возможные излишки выводятся с водой естественным путем в течение считанных часов.
  2. К жирорастворимым (липовитаминам) причисляются А, D, E, и K. Сюда же относят и позже открытый витамин F. Это витамины, растворяемые в ненасыщенных жирных кислотах – арахидоновой, линолевой и линоленовой и пр.). Витамины этой группы имеют свойство депонироваться в организме – главным образом, в печени и жировой ткани.

В связи с этой спецификой чаще отмечается недостаток именно водорастворимых витаминов, а вот гипервитаминозы развиваются главным образом по жирорастворимым.

Обратите внимание : у витамина К имеется водорастворимый аналог (викасол), синтезированный еще в начале 40-х годов прошлого столетия. К настоящему моменту времени получены также растворимые в воде препараты других липовитаминов. В связи с этим, такое деление на группы постепенно становится довольно условным.

Для обозначения отдельных соединений и групп используются латинские буквы. По мере глубокого изучения витаминов стало ясно, что некоторые представляют собой не отдельные вещества, а комплексы. Используемые в настоящее время названия были утверждены в 1956 году.

Краткие характеристики отдельных витаминов

Витамин А (ретинол)

Рекомендуем прочитать:

Это жирорастворимое соединение позволяет предупредить ксерофтальмию и нарушение сумеречного зрения, а также повысить резистентность организма к инфекционным агентам. От ретинола зависит эластичность эпителия кожных покровов и внутренних слизистых оболочек, рост волос и скорость регенерации (восстановления) тканей. Витамин А обладает выраженной антиоксидантной активностью. Данный липовитамин необходим для развития яйцеклеток и нормального течения процесса сперматогенеза. Он минимизирует негативные последствия стрессов и воздействия загрязненного воздуха.

Предшественником ретинола является каротин.

Исследования показали, что витамин А препятствует развитию онкологических заболеваний. Ретинол обеспечивает нормальную функциональную активность щитовидной железы.

Важно: излишнее поступление ретинола с продуктами животного происхождения вызывает гипервитаминоз. Следствием переизбытка витамина А может стать рак.

Витамин В1 (тиамин)

Рекомендуем прочитать:

Человек должен получать тиамин каждый день в достаточных количествах, поскольку данное соединение в организме не депонируется. В1 нужен для нормального функционирования сердечно-сосудистой и эндокринной систем, а также головного мозга. Тиамин принимает непосредственно участие в метаболизме ацетилхолина – медиатора нервного сигнала. В1 способен нормализовать секрецию желудочного сока и стимулировать пищеварение, улучшая моторику органов ЖКТ. От тиамина во многом зависит белковый и жировой обмен, что важно для роста и регенерации тканей. Он также нужен для расщепления сложных углеводов до основного источника энергии – глюкозы.

Важно: содержание тиамина в продуктах заметно падает в ходе термической обработки. В частности картофель рекомендуется запекать или готовить на пару.

Витамин В2 (рибофлавин)

Рибофлавин необходим для биосинтеза ряда гормонов и образования красных кровяных телец. Витамин В2 нужен для образования АТФ («энергетической базы» организма), защиты сетчатки глаза от негативного воздействия ультрафиолета, нормального развития плода, а также регенерации и обновления тканей.

Витамин В4 (холин)

Холин участвует в метаболизме липидов и биосинтезе лецитина. Витамин В4 очень важен для выработки ацетилхолина, защиты печени от токсинов, процессов роста и гемопоэза.

Витамин В5 (пантотеновая кислота)

Витамин В5 позитивно влияет на нервную систему, так как стимулирует биосинтез медиатора возбуждения – ацетилхолина. Пантотеновая кислота улучшает кишечную перистальтику, укрепляет защитные силы организма и укоряет регенерацию поврежденных тканей. В5 является частью ряда энзимов, необходимых для нормального течения многих метаболических процессов.

Витамин В6 (пиридоксин)

Пиридоксин нужен для нормальной функциональной активности ЦНС и укрепления иммунитета. В6 принимает непосредственное участие в процессе биосинтеза нуклеиновых кислот и построении большого числа различных энзимов. Витамин способствует полноценному усвоению жизненно необходимых ненасыщенных жирных кислот.

Витамин В8 (инозит)

Инозит обнаружен в глазном хрусталике, слезной жидкости, нервных волокнах, а также в сперме.

В8 способствует снижению уровня холестерина в крови, повышает эластичность сосудистых стенок, нормализует перистальтику ЖКТ и оказывает седативное воздействие на нервную систему.

Витамин В9 ()

Небольшое количество фолиевой кислоты образуют микроорганизмы, населяющие кишечник. В9 принимает участие в процессе деления клеток, биосинтезе нуклеиновых кислот и нейромедиаторов – норадреналина и серотонина. От фолиевой кислоты во многом зависит процесс гемопоэза. Она также участвует в метаболизме липидов и холестерина.

Витамин В12 (цианокобаламин)

Цианокобаламин принимает непосредственное участие в процессе гемопоэза и нужен для нормального течения белкового и липидного обмена. В12 стимулирует рост и регенерацию тканей, улучшает состояние нервной системы и задействуется организмом при создании аминокислот.

Рекомендуем прочитать:

Сейчас все знают о том, что аскорбиновая кислота позволяет укрепить иммунитет и предупредить или облегчить течение ряда заболеваний (в частности – и простуды). Это открытие было сделано сравнительно недавно; научные обоснования эффективности витамина С для профилактики простуды появились только в 1970 году. Аскорбиновая кислота депонируется в организме в очень незначительных количествах, поэтому человеку нужно постоянно пополнять запасы этого водорастворимого соединения.

Лучшим его источником являются многие свежие фрукты и овощи.

Когда в холодное время года свежих растительных продуктов в рационе мало, целесообразно ежедневно принимать «аскорбинку» в таблетках или драже. Особенно важно не забывать об этом ослабленным людям и женщинам в период беременности. Регулярный прием витамина С крайне необходим детям. Он принимает участие в биосинтезе коллагена и многих обменных процессах, а также способствует детоксикации организма.

Витамин D (эргокальциферол)

Рекомендуем прочитать:

Витамин D не только поступает в организм извне, но и синтезируется в коже под действием ультрафиолетового излучения. Соединение необходимо для образования и дальнейшего роста полноценной костной ткани. Эргокальциферол обеспечивает регулирование метаболизма фосфора и кальция, способствует выведению тяжелых металлов, улучшает работу сердца и нормализует процесс свертывания крови.

Витамин Е (токоферол)

Рекомендуем прочитать:

Токоферол является наиболее мощным из известных антиоксидантов. Он минимизирует негативное действие свободных радикалов на клеточном уровне, замедляя естественные процессы старения. Благодаря этому витамин Е способен улучшить работу целого ряда органов и систем и предотвратить развитие тяжелых заболеваний. Он улучшает работу мышц и ускоряет репаративные процессы.

Витамин К (менадион)

Рекомендуем прочитать:

От витамина К зависит свертывание крови, а также процесс образования костной ткани. Менадион улучшает функциональную активность почек. Он также укрепляет стенки кровеносных сосудов и мышцы и нормализует функции органов пищеварительного тракта. Витамин К необходим для синтеза АТФ и креатинфосфата – важнейших источников энергии.

Витамин L-Карнитин

L-Карнитин участвует в метаболизме липидов, способствуя получению организмом энергии. Данный витамин повышает выносливость, способствует росту мышц, снижает уровень холестерина и улучшает состояние миокарда.

Витамин Р (В3, цитрин)

Рекомендуем прочитать:

Важнейшей функцией витамина Р является укрепление и повышение эластичности стенок мелких кровеносных сосудов, а также снижение их проницаемости. Цитрин способен предотвращать кровоизлияния и обладает выраженной антиоксидантной активностью.

Витамин РР (ниацин, никотинамид)

Во многих растительных продуктах содержится никотиновая кислота, а в животной пище данный витамин присутствует в виде никотинамида.

Витамин РР принимает активное участие в метаболизме белков и способствует получению организмом энергии при утилизации углеводов и липидов. Ниацин входит в состав ряда ферментных соединений, отвечающих за процессы клеточного дыхания. Витамин улучшает состояние нервной системы и укрепляет сердечно-сосудистую. От никотинамида во многом зависит состояние слизистых оболочек и кожных покровов. Благодаря РР улучшается зрение и нормализуется артериальное давление при .

Витамин U (S-метилметионин)

Витамин U уменьшает уровень гистамина за счет его метилирования, что позволяет существенно понизить кислотность желудочного сока. S-метилметионин обладает также антисклеротическим воздействием.

Нужно ли регулярно пить витаминные комплексы?

Безусловно, многие витамины должны поступать в организм регулярно. Потребность во многих биологически активных соединениях возрастает при повышенной нагрузке на организм (при физической работе, занятиях спортом, во время болезни и т. д.). Вопрос о необходимости начала приема того или иного комплексного витаминного препарата решается строго индивидуально. Бесконтрольный прием этих фармакологических средства может стать причиной гипервитаминозов, т. е. переизбытка в организме того или иного витамина, что ни к чему хорошему не приведет. Таким образом, прием комплексов нужно начинать только после предварительной консультации с лечащим врачом.

Обратите внимание : единственный натуральный поливитамин – это грудное молоко. Малышам его не могут заменить никакие синтетические препараты.

Целесообразно дополнительно принимать некоторые витаминные препараты беременным (в связи с увеличением потребности), вегетарианцам (многие соединения человек получает с животной пищей), а также людям, придерживающимся ограничивающей диеты.

Поливитамины необходимы детям и подросткам. У них ускорен обмен веществ, так как он нужен не только для поддержания функций органов и систем, но и для активного роста и развития. Конечно, лучше если достаточное количество витаминов будет поступать с натуральными продуктами, но некоторые из них содержат нужные соединения в достаточном количестве только в определенный сезон (в основном это касается овощей и фруктов). В связи с этим, без фармакологических препаратов обойтись достаточно проблематично.

Витамины - это вещества, необходимые для поддержания жизни .

К ак образуются витамины?

Они образуются растениями или животными и должны поступать в организм в микроскопических количествах для продолжения жизненных процессов.

Слово «vita » означает жизнь.

С транная и опасная болезнь

До конца XIX века странная и опасная болезнь под названием «цинга » часто серьёзно поражала команды во всем мире.

Ещё в конце XVIII века было обнаружено, что с помощью свежих фруктов и овощей болезнь излечивалась. Учёным понадобилось 100 лет, чтобы открыть этого явления: оказывается, свежие продукты содержали витамины!

Н азвания витаминов в алфавитном порядке

Поскольку учёные в то время не знали химическую природу витаминов, они не давали им имена, а просто называли по алфавиту А , В , С , D и так далее.

Рассмотрим, почему некоторые из них необходимы для хорошего здоровья.

В итамин А

Этот витамин всегда связан с жиром в животном организме. Он образуется в растениях и переходит к животным, питающимся этими . Витамин А помогает предупреждать инфекцию. Он содержится в молоке, яичном желтке, печени, рыбьем жире , а также в салате, моркови и шпинате .

В итамин В

Его сейчас называют «В-комплекс ». Многие годы считался одним витамином. В настоящее время известно, что существуют по меньшей мере шесть различных витаминов, являющихся модификациями витамина В.

Витамин В1 необходим для профилактики некоторых нервных заболеваний. Кроме того, его отсутствие вызывает болезнь «авитаминоз ». Витамин В1 содержится в , свежих фруктах и овощах , всех злаках . Он должен постоянно восполняться в организме.

В итамин С

Отсутствие этого витамина вызывает цингу, при которой окостеневают суставы, расшатываются зубы, ослабевают . Богаты витамином С апельсины, кабачки, томаты .

Организм не может откладывать витамин С, поэтому его нужно регулярно восполнять.

В итамин D

Этот витамин важен для правильного развития костей и младенцев.

В большом количестве он обнаружен в жире, печени и яичном желтке . Солнечный свет также обеспечивает нашему организму витамин D.

Если у вас правильно подобранное , вы, вероятно, получаете достаточно необходимых вам витаминов.

Интересный факт о витаминах и минералах

Это абсолютная необходимость в жизни каждого человека, вне зависимости от образа жизни и вида деятельности. В 1912 году польский биохимик Казимир Функ впервые ввёл понятие витаминов. Он называл их «vital amines» то есть «амины жизни».

❀ ❀ ❀

Просмотров