Определение слабых металлов в продуктах питания. Рациональное питание, пищевые добавки и биостимуляторы

Распространенное представление об

обязательной токсичности тяжелых металлов (ТМ) для растений

является заблуждением, т.к. в эту группу входят медь, цинк,

молибден, кобальт и марганец – такие элементы, биологическое

значение которых хорошо известно. Медь и кобальт относятся к

микроэлементам, которые вносят в качестве удобрений. Вполне

справедливым будет связывать представление об их опасности для

растений только с большими концентрациями в почве в результате

промышленного или иного загрязнения. В полной мере «тяжелые»,

в смысле «токсичные», следует относить только к ртути, кадмию и

Допустимое количество тяжелых металлов, которое человек

может потреблять с продуктами питания без риска заболеть,

колеблется в зависимости от вида металла: свинец – 3 мг, кадмий

0,4 - 0,5, ртуть – 0,3 мг в неделю. Хотя эти уровни условны, тем не

менее, они служат основой для контроля содержания тяжелых

металлов в продуктах питания.

В живых организмах тяжелые металлы играют двоякую роль.

В малых количествах они входят в состав биологически активных

веществ, регулирующих нормальный ход процессов

жизнедеятельности. Нарушение в результате техногенного

загрязнения сложившихся эволюционно концентраций тяжелых

металлов приводит к отрицательным и даже катастрофическим

последствиям для живых организмов. Поступившие, например,

в организм человека тяжелые металлы накапливаются

преимущественно в печени и выводятся крайне медленно.

Первоначально они накапливаются главным образом в почвах.

Продукция растениеводства, выращенная даже на

слабозагрязненных почвах, способна вызвать кумулятивный

эффект, обусловливая постепенное увеличение содержания

тяжелых металлов в организме теплокровных (человек, животные).

Поступая в растения, тяжелые металлы распределяются в их

органах весьма неравномерно. Многими исследованиями было

показано, что при выращивании растений на почвах с повышенным

в вегетативных частях растений, а в генеративных их содержание

повышается меньше. Растение как бы стремится сохранить свою

генеративную часть в чистоте. Зачастую корневые системы

надземных органах цинк концентрируется преимущественно в

старых листьях. Корни пшеницы отличаются более высоким



уровень накопления тяжелых металлов в различных частях растений

зависит от биологических особенностей культуры, физиологической

роли элемента, его содержания в почве и доступности для растений.

Знание особенностей распределения тяжелых металлов

в растениях представляет интерес для потребителя, поскольку

позволяет рационально использовать продукцию в процессе

технологической переработки и при употреблении в пищу в сыром

виде. Важно знать особенности распределения тяжелых металлов

в овощных культурах. Например, в корнеплодах моркови их

железа характерно высокое содержание в головке и равномерное

распределение в остальной части корнеплода. В центральной части

корнеплода содержится повышенное количество цинка и свинца, а

в коре – повышенное количество меди, марганца, кадмия и железа.

Минимальное количество кадмия, цинка и свинца находится

в мякоти клубней картофеля. Повышенное количество железа

характерно для периферийной части клубней. Медь распределяется

равномерно во всех частях клубня. Для зеленных культур

характерно более высокое содержание свинца в черешках, чем

листовых пластинках. Растения салата отличаются наиболее

петрушки и хрена – наименьшим. Среди зеленных культур

наибольшее количество свинца во всех органах растений

наблюдается у укропа, щавеля и салата.

Таким образом, зная распределение тяжелых металлов

в отдельных зонах и тканях различных органов растений, можно

оценить их опасность в зависимости от объема, который они

занимают в данном органе. Это дает основание для механического

удаления опасной части органа.

Одним из важнейших звеньев производства экологически

продукции является нормирование содержания тяжелых металлов.

Это является важным шагом на пути снижения поступления



вредных веществ в организм человека и животных. В таблице 6

приведены ПДК тяжелых металлов в пищевых продуктах. Однако

не следует преувеличивать значение этих показателей. По своей

сути они являются лишь своеобразными «опорными точками» для

сравнительных оценок. Имеющиеся ПДК загрязнителей позволяют

сравнивать качественное состояние продукции по уровню ее

загрязненности, разрабатывать и реализовывать необходимые

охранные мероприятия и т.д. Во многих странах разработаны

национальные нормативы ДОК. Сопоставление этих норм

свидетельствует о том, что у них есть как сходство, так и различия.

Например, в Германии ДОК кадмия в овощах в 3 раза выше, чем

принято в России.

Техногенное поступление в окружающую среду тяжелых

металлов существенно снижает продуктивность плодовых растений,

качество и питательную ценность плодов. Наиболее токсичными

среди металлов являются свинец и никель, присутствие которых

в продуктах питания строго нормируется. Такие биогенные

элементы, как цинк, железо и медь, необходимы для протекания

нормальных физиологических процессов в организме человека,

однако при высоких концентрациях проявляется токсический

эффект. Как показали многолетние исследования Всероссийского

НИИ селекции плодовых культур, содержание токсических

элементов в плодах не превышает санитарно-гигиенических норм и

варьирует в следующих пределах: свинец – 0,025-0,230, никель –

0,035-0Э380 мг/кг, а ПДК соответственно 0,4 и 0,5 мг/кг. По

располагаются по возрастающей в следующем порядке:

слива< земляника < красная смородина < крыжовник <

груша < яблоня < черная смородина < вишня.

Было также установлено, что 10-20% свинца и 15-30% никеля

можно удалить при мытье фруктов. Для уменьшения загрязнения

плодово-ягодной продукции тяжелыми металлами рекомендуется

размещать садовые насаждения не ближе 500 м от автомагистралей.

Применяя такие агротехнические приемы, как известкование,

внесение минеральных и органических удобрений можно на разных

стадиях производства свести к минимуму вероятность накопления

тяжелых металлов в вырабатываемой продукции. В опытах на

песчаной почве было установлено, что извлечение овсом никеля при

сильной кислотности почв и невысоком содержании гумуса

возрастало, а при известковании уменьшалось. Например, этот

прием заметно ослаблял отрицательное действие никеля и снизил

его поглощение растениями. Положительное действие гумуса

связывают с образованием устойчивых комплексных соединений с

этим элементом.

Общая площадь аэротехногенного загрязнения в Мурманской

области составляет 21 тыс. км2, причем основным источником

являются металлургические предприятия. Чувствительность

растений, прежде всего, выражается в угнетении их роста, что

связано, как правило, с повышением количества металлов в тканях

растений. Золу растений рассматривают как одну из существенных

показателей качества. Повышенное содержание золы является, как

правило, признаком накопления ТМ. Специалистами Кольского

научного центра РАН было изучение влияние аэротехногенного

загрязнения на качество кормовых трав, выращенных в

Мончегорском районе. По результатам агрохимического

обследования почвы пахотных участков (иллювиально-гумусовый

подзол) можно отнести к хорошо окультуренным: их реакция

слабокислая или близкая к нейтральной, они содержат

повышенное количество подвижного фосфора и среднее

подвижного калия. Кислотно-щелочные свойства почвы во многом

определяют накопление и миграцию тяжелых металлов в почве.

В кислой среде возрастает их подвижность и возможность

поглощения растениями. Для большинства кормовых растений,

выращиваемых в Мурманской области, эта реакция близка

оптимальной.

Тем не менее, эти почвы нуждаются в известковании с учетом

их постоянного аэротехногенного загрязнения. По количеству меди

и никеля почвы следует отнести к загрязненным. Группировки почв

по градациям их содержания следующие: для меди при < 60 мг/кг –

первая, 60-180 мг/кг – вторая; для никеля при 180-540 мг/кг – вторая

из пяти имеющихся, основанных на геометрической прогрессии

нарастающих концентраций этих элементов. Для кобальта

отсутствует ПДК в почвах нашей страны по валовому содержанию,

но предложен ПДК по подвижным формам – 5 мг/кг почвы.

Агрохимическая служба России ориентируется на ПДК для меди

100 мг/кг и никеля 150 мг/кг.

Влияние загрязнения выражается в заметной низкорослости

растений и неразвитой корневой системе. Содержание золы

в растениях позволяет выявить общее количество минеральных

веществ, поступающих из почвы. В зависимости от ее типа, климата

и агротехники, зольный состав может значительно меняться. По

нашим данным, которые согласуются с полученными в Мурманской

области другими специалистами (Чемисов и др., 1978), в составе

сухих веществ на долю золы у кормовых трав обычно приходится 4-

8%, у турнепса 9-11%. В определяемых растениях показатель

зольности выше, что свидетельствует о повышенном в 1,3-2 раза

мере это объясняется и накоплением ТМ. Для сравнения следует

привести данные, полученные в Норвегии. Большинство образцов

трав, собранных в июне-июле содержало кальция в среднем 0,65 с

колебаниями от 0,17 до 1,8%. Минимальный уровень для злаковых

трав был определен в 1%. В районах, примыкающих к российской

территории, и находящихся в зоне воздействия предприятия

цветной металлургии, отмечено накопления цинка - 47,5 мг/кг и

меди - 44,0 мг/кг. Количество клетчатки для овса и турнепса –

обычное для условий области, хотя относительно средних данных

для этих культур оно немного выше. Для смеси гороха и рапса нет

нормативов для сравнения, но с учетом того, что у гороха клетчатки

бывает 24-26%, показатель можно отнести к нормативному. В

турнепсе и горохе с рапсом примерно вдвое больше общего и

белкового азота, чем в овсе, что надо объяснить не столько

биологическими особенностями этих культур, сколько условиями

аэротехногенного загрязнения, в которых они выращиваются.

Значительная доля этого азота состоит из нитратов – у турнепса

32%, у гороха с рапсом 14% и только у овса 4% от общего азота.

величины БЭВ и легкогидролизуемых углеводов из-за расходования

на синтез белка. Промышленное загрязнение атмосферы

фитотоксичными газами и большой запас в почве элементов

минерального питания часто приводят к накоплению

дополнительного количества азота в надземной части травянистых

Каротина оказалось либо больше, либо меньше потребности

животных. По содержанию нитратов у всех растений есть

превышение ПДК, особенно у турнепса, что исключает возможность

его использования для кормления животных. Во всех растениях

повышено количество никеля, а меди меньше ПДК, равного 10 мг/кг

сырой массы (что при тех же исходных данных по влажности

соответствует 32 мг/кг сухого вещества). В растительном корме

Все полученные нами данные многократно перекрывают это

уровень. Для меди оптимум находится в пределах 8-11 мг/кг сухого

вещества. Зарубежные данные близки отечественным – 4-10 мг/кг и

2-15 мг/кг сухого вещества.

Приведенные данные подтверждают негативную роль ТМ для

сельскохозяйственных растений и, в частности, овса. Опытами

установлено, что фитотоксичным считается такое содержание

металла в почве, при котором продуктивность растений снижается

на 10% относительно контроля. В описанном выше эксперименте

это показатель составлял 41-75%.

окультуренных альфегумусовых подзолистых почвах показало, что

оно довольно подвижно во времени. Некоторые специалисты

считают, что стационарного состояния ТМ в почве не бывает. Такое

положение является весьма существенным при оценке перспектив

мелиорации загрязненных почв и выращивания на них

сельскохозяйственных культур. Следует отметить, что даже

кардинальные технологические решения, которые позволили бы

полностью прекратить техногенное загрязнение в районе

Мончегорска, приведут лишь к некоторой стабилизации

существующего состояния окружающей среды. Возобновление

естественной растительности в зоне интенсивного выпадения

загрязненных осадков возможно только через несколько столетий

после их прекращения. Причем восстановление фитоценозов будет

идти лишь на участках со слабым или умеренным повреждением.

Таким образом, еще достаточно длительный период будут

использоваться в земледелии почвы с повышенным содержанием

сульфатов и тяжелых металлов.

Использование и регулирование почвенного плодородия при

воздействии промышленного загрязнения должно быть основано на

соблюдении принципов экологического земледелия (Каштанов,

Щербаков и др., 1993). Первый из них формирует соответствие

сельскохозяйственных культур условиям, к которым они

экологически наиболее приспособлены. Из 7 многолетних и 3

однолетних видов кормовых трав, преимущественно

распространенных в Мурманской области, в районе

непосредственного влияния комбината «Североникель»

выращивают, в основном, овес, горох, тимофеевку луговую и

кострец безостый. Наиболее предпочтительными из них следует

части меньше тяжелых металлов, чем многолетние (если травы не

предназначены для кормления животных, а в качестве

мелиоративного приема, тогда лучше высевать многолетние травы).

Несомненно, что с учетом всех нормативных требований к качеству

растительной продукции, ведение земледелия в таких условиях

нежелательно. Хотя в опытах и не обнаружено прямой связи между

степенью загрязнения почв медью, никелем, кобальтом и их

поступлением в растения, в 15-км зоне вокруг предприятия

накопление этих элементов в травах всегда превышает ПДК. В них

отмечается также повышенное количество кальция и нитратов.

Однако сложившаяся инфраструктура и природные условия не

позволяют рассчитывать на освоение других территорий без весьма

значительных затрат. На основе изложенного допустимо

возделывать на удалении 15 км и более от предприятия цветной

металлургии, что способствует получению более качественной

кормовой продукцию. Это согласуется с результатами исследований

микробиологов, которые констатировали снижение

фитотоксичности почв именно с такого расстояния (Евдокимова,

Второй принцип устанавливает, что антропогенные

воздействия на почву, растения и атмосферу не должны превышать

пределы, за которыми снижается производительность

агроэкосистемы. Граничное состояние для окультуренной

подзолистой почвы, как между обладающей определенным

плодородием и бесплодной, находится в диапазоне содержания

меди и никеля каждого по 0,01-0,05% в присутствии

техногенной двуокиси серы. В связи с этим в зоне аэротехногенного

воздействия необходим ежегодный контроль над реакцией почвы и

Третий принцип следует из предыдущего и заключается

в отсутствии целесообразности повышать производительность

агроэкосистем без одновременного совершенствования всех

элементов при использовании определенной системы земледелия.

Комплекс агротехнических мероприятий в таком районе должен

быть направлен не только на создание оптимальных условий

питания растений, но и снижения негативного влияния ТМ. Для

поддержания существующего уровня плодородия следует

соблюдать следующие правила: ежегодное совместное внесение

минеральных удобрений (не менее N120P80K80) и навоза (не менее

80 т/га); систематическое применение извести на кислых почвах.

Соблюдение предложенных практических мер позволяет

возделывать кормовые травы в зоне влияния предприятия цветной

металлургии при постоянном контроле над их качеством, особенно,

Нитраты. Сельскохозяйственной продукции без нитратов не

бывает, поскольку они являются основным источником азота

в питании растений. Нитраты (NO3

-) представляют собой соли

азотной кислоты, а нитриты (NO2

-) – азотистой. Соли азотной

кислоты используют в качестве удобрения (натриевая селитра,

аммиачная селитра, кальциевая селитра и др.). Для получения не

только высоких, но и высококачественных урожаев необходимо

вносить в почву минеральные азотные удобрения и органику.

Потребность растений зависит от многих факторов: вида, сорта,

погодных условий, свойств почвы и количества ранее

применявшихся удобрений.

Как вещества, обладающие токсическими свойствами,

нитраты и нитриты известны давно. Широкую известность

получило заболевание под названием «метгемоглобинемия»,

особенно опасное для детей грудного возраста. При этом

заболевании нитратный ион, взаимодействуя с гемоглобином крови,

образует метгемоглобин, который не способен транспортировать

кислород крови, что приводит к удушью. При поступлении

значительных количеств нитратов в организм человека

проявляется цианоз (темно синяя или фиолетово-синяя окраска

слизистой и кожного покрова), понижается кровяное давление,

наблюдается сердечная и легочная недостаточность.

Проблема нитратов в сельскохозяйственной продукции тесно

связана с крайне низкой культурой земледелия, как

в государственном, так и в частном секторе. Неграмотное

применение азотных удобрений в высоких дозах ведет к тому, что

избыток азота в почве вызывает поступление нитратов в растения в

больших количествах. Как правило, содержание нитратов выражают

в мг/кг или мг/100г. Нитраты являются главным элементом питания

растений, произрастающих на земле, поскольку в них входит азот –

основной строительный материал. В естественных условиях (в лесу

или на лугу) содержание нитратов в растениях небольшое (1-30

мг/кг сухой массы), они почти полностью переходят в органические

соединения. В культурных растениях при возделывании на

удобренной почве количество нитратов возрастает во много раз (от

40 до 12000 мг/кг сухой массы). Нитраты присутствуют во всех

средах: почве, воде, воздухе. Сами нитраты не отличаются высокой

токсичностью, однако под воздействием микроорганизмов или в

процессе химической реакции восстанавливаются до нитритов,

опасных для человека и животных. В организме теплокровных

нитриты участвуют в образовании более сложных (и

наиболее опасных) соединений – нитрозаминов, которые обладают

канцерогенными свойствами.

Среди возделываемых культур наибольшее количество

нитратов (в мг/кг сухой массы) накапливается в свекле столовой

(200-4500), салате (400-2900), шпинате (600-4000), укропе (400-

2200), редисе (400-2700), редьке 1500-1800). Томат, перец,

баклажан, чеснок, горошек и фасоль отличаются низким

В связи с опасностью, которую нитраты могут представлять

для нормального питания человека, в различных странах

разработаны ПДК нитратов в продуктах питания. Так как нитраты

поступают в организм человека преимущественно из овощей,

то особое внимание обращают на динамику их содержания в овощах

и продуктах их переработки. ПДК установлены для продукции как

открытого, так и защищенного грунта (для которого характерны

более высокие показатели, т.к. испытывая недостаток света,

растения накапливают значительное их количество). Например,

установлены следующие предельно допустимые концентрации

нитратов в некоторых пищевых продуктах (мг/кг сырой массы):

картофель – 250; капуста белокочанная – 900; морковь

ранняя – 400; томаты – 150 (для защищенного грунта – 300);

свекла столовая – 1400; лук репчатый – 80; лук зеленый – 600; арбуз

– 60; дыня – 90; яблоки – 60; груши – 60.

Для снижения содержания нитратов в продуктах питания

важно правильно выбрать способ выращивания культур, способы

хранения и переработки, а также методы контроля. Накопление

нитратов различными культурами имеет сортовую специфику. Это

значит, что одна и та же культура в зависимости от сорта может

накапливать различное количество этих соединений. Широкое

распространение сортов с низкой способностью к накоплению

нитратов должно стать основой для улучшения биологического

качества растениеводческой продукции.

Уменьшению накопления нитратов в растениях способствует

рациональная система применения удобрений, предполагающая

правильное определение форм, доз, сроков и способов внесения.

Лучшие формы азотных удобрений – сульфат аммония и мочевина.

Большое внимание следует уделять дозе азотного удобрения. Она не

должна превышать 20 г на 1 м2 по азоту. Вносить удобрения лучше

перед перекопкой участка, локальным способом, когда удобрения

вносят рядками (лентами) на глубину 10-12 см (расстояние между

рядками 15-20 см). Навоз лучше применять, предварительно

прокомпостировав его с соломой или торфом.

Убранную продукцию следует правильно хранить и

перерабатывать, поскольку нарушение условий хранения и режимов

переработки может вызвать повышение количества нитратов

в конечном продукте. Колебания в содержании нитратов при

хранении зависят от вида продукции, исходного содержания их и

режимов хранения. Хранение свежеубранных овощей при низкой

температуре способствует их образованию. К накоплению нитратов

приводят сильная загрязненность листовых овощей и корнеплодов,

механические повреждения, оттаивание свежезамороженных

овощей в течение длительного времени при комнатной температуре.

При хранении овощей и картофеля в оптимальных условиях

(температура и влажность воздуха) количество нитратов во всех

видах продукции снижается, причем наиболее заметно в феврале –

В зависимости от режимов и видов технологической

обработки меняется содержание нитратного азота в конечном

продукте. Как правило, количество нитратов в продукте в процессе

переработки снижается. При этом важно соблюдать режимы

переработки. Предварительная подготовка продукции (очистка,

мойка, сушка) приводит к снижению количества нитратов в

продукции на 3-35%. В процессе переработки продукции быстро

разрушаются ферменты и гибнут микроорганизмы, что

останавливает дальнейшее превращение нитрата в нитрит.

Например, при варке картофеля уровень нитратного азота падает на

40-80%, при жарении в растительном масле – на 15%. При

квашении, мариновании и консервировании часть нитратов

переходит в нитриты, количество которых постепенно падает, и к

седьмому дню они полностью исчезают. По этой причине

использовать консервированные продукты в пищу в течение первой

термической обработке, количество нитратов уменьшается в 2 раза.

Пестициды и их остаточное количество. В современном

сельскохозяйственном производстве используется широкий

ассортимент химических средств, предназначенных для повышения

урожайности, защиты и регуляции роста растений. С точки зрения

загрязнения продуктов питания и влияния на здоровье населения к

числу наиболее опасных химических средств относятся химические

средства защиты растений (пестициды).

В настоящее время применяют около 3,2 млн. т пестицидов (в

среднем по 0,5 кг на одного жителя планеты). Пестициды – общее

наименование всех химических соединений, которые применяются

в сельском хозяйстве для защиты культурных растений от вредных

организмов. В качестве пестицидов используют около 900 активных

химических соединений, входящих в состав 60 тыс. препаратов.

Ими обрабатывают более 4 млрд. га земли.

По объектам применения пестициды разделяют на следующие

основные группы: акарициды - для борьбы с вредными клещами;

инсектициды – с вредными насекомыми; моллюскоциды –

моллюсками; нематициды – нематодами; роденцидами –

грызунами; бактерициды – для защиты растений от бактериальных

болезней; фунгициды – от грибных растений; гербициды – для

борьбы с сорными растениями; десиканты – препарате для

предуборочного подсушивания растений; дефолианты – для

удаления листьев; репелленты – препараты для отпугивания

вредных насекомых; аттрактанты – для привлечения насекомых;

хемостерилянты – для химической стерилизации насекомых;

феромоны – вещества, продуцируемые насекомыми или их

синтетические аналоги для воздействия на особей другого пола;

регуляторы роста растений – вещества, влияющие на рост и

развитие растений; ретарданты – для торможения роста растений;

поверхностно-активные вещества, адъюванты - добавки к

гербицидам, усиливающие их действие. Среди химических средств

защиты растений наибольшей токсичностью по отношению к

теплокровным животным и человеку отличаются инсектициды, а

наименьшей – гербициды. В Список пестицидов и агрохимикатов,

разрешенных к применению на территории Российской Федерации

включены около 130 инсектицидов для борьбы с вредными

насекомыми. По способу проникновения и действия на вредный

организм инсектициды делятся на контактные, вызывающие

гибель насекомых при контакте вещества с их телом; кишечные,

вызывающие отравление организма при попадании яда с пищей в

кишечник; системные, способные передвигаться по проводящей

системе растения и отравлять поедающих его насекомых;

фумиганты – вещества, действующие на насекомых в паро- или

газообразном состоянии через органы дыхания.

Химические средства борьбы с сорной растительностью –

гербициды – могут быть избирательного и сплошного действия.

Первые уничтожают растения, относящиеся к отдельному классу

(однодольные, многолетние корневищные, корнеотпрысковые),

семейству (злаки), виду (овсюг, пырей, виды осота); вторые –

любую растительность.

Особое беспокойство вызывает возможность загрязнения

почв, воды, растений, в том числе урожая и продуктов его

переработки, остаточными количествами пестицидов. Пестициды

могут приводить к образованию злокачественных опухолей у

человека. Примерно 70% применяемых соединений попадает в

организм человека с мясом, молоком и яйцами, а 30% - с

растительной пищей.

Основная причина накопления остаточных количеств

пестицидов в продуктах – нарушение правил и регламентов

сроков обработки сельскохозяйственных культур, неправильный

выбор препаративной формы и способа применения и т.п.). При

оценке возможности допуска нового препарата проводят

экотоксикологическую проверку. При этом делают упор не только

на выявление характерных особенностей поведения пестицида

в окружающей среде, но и его действия на растения и животных

в процессе их биологического развития, т.е. контроль должен

распространяться и на качество конечной продукции, используемой

для питания. Критерием оценки содержания пестицидов является

ПДК или ДОК. В разных странах эти нормативы неодинаковы, что

затрудняет обмен продовольствием. Основная причина таких

различий – использование разных методов определения остаточных

количеств препаратов и продуктов их распада.

Наиболее часто в пищевых продуктах содержатся остатки

дихлордифенилтрихлорэтана (ДДТ) и изомеров

гексахлорциклогексана (ГХЦГ). В то же время

фосфороорганические пестициды нестабильны, практически не

накапливаются в продуктах питания. Для того чтобы избежать

возможной аккумуляции остаточных количеств пестицидов в

окружающей среде, снизить риск возникновения резистентных

видов вредных организмов, необходимо чередовать препараты с

разным механизмом действия.

Растения по степени накопления остаточных количеств

хлороорганических пестицидов (ХОП), которые в течение

нескольких десятилетий занимали одно из первых мест по

масштабам использования в сельском хозяйстве, в продуктивных

органах располагаются в следующем порядке:

морковь > петрушка > картофель > свекла > многолетние

травы > томат > кукуруза > капуста белокочанная.

В корнеплодах ХОП накапливаются в основном в кожуре и

в меньших количествах – в мякоти. Накопление пестицидов и

продуктов их распада в пищевой продукции связано с процессами

метаболизма, с биохимическим составом растений. Длительному

сохранению химических средств защиты растений в зерне, плодах и

ягодах способствует наличие в продуктах моносахаридов и

полисахаридов, которые являются стабилизаторами токсикантов

(в фармакологии это свойство сахаров используют для

приготовления таблеток).

Основную роль в устойчивом функционировании

агроэкосистем играют почвы с их уникальными свойствами и

способностью к самоочищению от загрязняющих веществ, в том

числе и от остаточных количеств пестицидов. Важными факторами

в процессах трансформации загрязняющих веществ являются

гранулометрический состав, содержание гумуса в почве и его

состав. Гумус инактивирует продукты распада пестицидов и

препятствует тем самым загрязнению экосистем. Вместе с тем

сорбированные гумусовыми соединениями ксенобиотики могут

сохраняться в почве длительное время, представляя постоянную

угрозу токсикации отдельных компонентов экосистем.

Диоксины. Опасность диоксинов как веществ, относящихся к

разряду супертоксикантов, с последней четверти прошлого века

приобрела общепланетарные масштабы. Угрозу человечеству от

этой группы веществ можно сравнить с последствиями применения

ядерного оружия. Особо опасны для окружающей среды и человека

главным образом тетразамещенные диоксины – 2,3,7,8-ТХДД

(тетрахлорбибензол-n-диоксин) входит в состав пестицидов

комплексного действия в качестве микропримеси. Наиболее важные

химические характеристики диоксинов – чрезвычайная

стабильность в сильнокислых и щелочных растворах, высокая

устойчивость к окислителям. Период полураспада диоксинов в

почве составляет около 10 лет, в воде 1-2 года. Диоксины прочно

связываются с частицами почвы, поэтому плохо вымываются

дождями. Однако подвижность диоксинов резко снижается с

увеличением содержания в почве органического вещества.

Диоксины концентрируются в основном в верхнем 15-см

слое почвы.

Диоксины имеют исключительно техногенное

происхождение. Их появление в окружающей среде связано в

первую очередь с производством и использованием

хлорорганических соединений и утилизацией их отходов. В

воздушную среду диоксины попадают с дымом при сжигании

промышленных и бытовых отходов, а также с выхлопными газами

автомобилей. С воздушными массами диоксины переносятся на

значительные расстояния и могут быть причиной глобального

загрязнения.

Накопление диоксинов осуществляется главным образом по

пищевым цепям. Большинство диоксинов легко попадают в живые

организмы через желудочно-кишечный тракт, кожные покровы. Эти

вещества очень медленно выводятся из живых организмов, а из

организма человека практически не выводятся. Даже при очень

малых концентрациях диоксины вызывают подавление иммунной

системы и нарушают способность организмов к адаптации в

изменяющихся условиях внешней среды. Это приводит к резкому

подавлению жизнедеятельности.

Диоксины концентрируются наиболее активно в организме

рыб и дойных коров. В молоке коров, содержащихся на фермах,

расположенных вблизи мусоросжигательных печей, химических,

целлюлозно-бумажных и металлургических заводов,

аккумулируется повышенное количество диоксинов. Вблизи этих

объектов загрязняются диоксинами главным образом вода и корма.

Предельно допустимая норма суточного и соответственно

недельного «потребления» диоксинов выражается в диоксиновом

эквиваленте (ДЭ), т.е. в пересчете на такую массу 2,3,7,8 – ТХДД,

систематическое попадание которой в организм приводит к

появлению одного пострадавшего на 1 млн. человек. Суточное

потребление диоксинов не должно превышать 0,1 пг/кг (1 пг = 10-12

районы, где содержание диоксинов выше 1 мкг ДЭ в 1 кг почвы. В

России установлены максимально допустимые концентрации

диоксинов: для пищевых продуктов – 0,036 нг/кг, для молока – 5,2 и

для рыбы 8,8 нг/кг.

Кроме перечисленных ксенобиотиков опасность для здоровья

человека имеют также следующие соединения, которые могут

попадать через продукты питания - полициклические ароматические

углеводороды (преимущественно 3,4-бенза(а)пирен – БП),

полихлорированные бифенилы (арохлоры, канехлоры, соволы,

фенохлоры, хлорфены), регуляторы роста растений (абсцизовая

кислота, ауксины, гиббереллины, цитоксины, этилен и др.),

лекарственные средства (антибиотики, сульфаниламидные

препараты, нитрофураны, гормональные препараты). микотоксины

(продукты жизнедеятельности различных видов микроскопических

К началу XXI века более 10 млн.га сельскохозяйственных

земель подвержены загрязнению тяжелыми металлами,

радионуклидами и другими токсикантами.

Генетически модифицированная продукция. К генетически

модифицированным или трансгенным продуктам (ГМП) относят

полученные из организмов, преимущественно растений, в ДНК

которых введен особый, не данный им от природы, ген. В процессе

развития этот ген наделяет своего «хозяина» новыми свойствами.

Например, выведен картофель, вредный для колорадского жука:

поев его листьев, тот мгновенно умирает. Трансгенные томаты или

огурцы дольше хранятся и не портятся. Коровы дают молоко

повышенной жирности. Генетически модифицированным культурам

нипочем сорняки, вредители и неблагоприятные температуры,

повышенная влажность или засуха, они успешнее сопротивляются

болезням и инфекциям. Использование таких растений позволяет

отказаться от многих средств защиты растений и удобрений.

Первое трансгенн

1

Металлы являются элементами, необходимые для полноценной жизнедеятельности и нормального функционирования организма в допустимых количествах в продуктах питания. Но в то же время избыточное содержание тяжелых металлов наносит вред на организм человека, вызывая ряд заболеваний. Они могут попасть в продукты питания различными способами: через воздух, почву, воду, или же вследствие нарушений правил технологической обработки пищевых продуктов и сырья. Поэтому необходимо иметь представление о содержании предельно допустимого содержания тяжелых металлов и их последствий, чему и посвящена статья в изучении действий тяжелых металлов на целостную живую систему.

тяжелые металлы

заболевание

1. Жидкин В.И., Сульдина Т.И. Радиоактивные загрязнения пищевых продуктов, их последствия для здоровья человека и радиозащита питанием // Интеграция образования в условиях инновационной экономики: материалы Междунар. науч.-практ. конф.: в 2 частях. – Саранск, 2014. – С. 118-122.

2. Жидкин В.И., Семушев А.М. Основные загрязнители продовольственного сырья и пищевых продуктов // Вторые чтения памяти профессора О.А. Зауралова: материалы Междунар. науч.-практ. конф. (Саранск, 12 мая 2010 г.). – Саранск, 2010. – С. 28-31.

3. Жидкин В.И., Семушев А.М. Пути загрязнения продовольствия // Третьи чтения памяти профессора О.А. Зауралова: материалы Междунар. науч.-практ. конф. (Саранск, 13 мая 2011 г.). – Саранск, 2011. – С. 20-23.

4. Семушев А.М. Влияние загрязнителей на качество продовольственных товаров растительного происхождения // Кооперация в системе общественного воспроизводства: материалы Междунар. науч.-практ. конф. (Саранск, 9-10 апр. 2013 г.) в 2 ч. – Саранск: Принт-Издат, 2013. – Ч. 2. – С. 221-223.

5. Жидкин В.И., Семушев А.М. Загрязнение пищевых продуктов нитратами, пестицидами и тяжелыми металлами // Предпринимательство. – 2014. – № 5. – С. 190-198.

6. Жидкин В.И., Семушев А.М. Экология. Загрязнение продовольственных товаров: учебное пособие. Саран. кооп. ин-т РУК. – Саранск: Принт-Издат, 2013. – 80 с.

7. Позняковский В.М. Гигиенические основы питания, безопасность и экспертиза товаров. – 5-е изд., испр. и доп. / Гриф МО и науки РФ. – Новосибирск: Сибир. универ. изд-во, 2007. – 485 с.

Среди загрязнителей биосферы, представляющих наибольший интерес для различных служб контроля ее качества, металлы (в первую очередь тяжелые, то есть имеющие атомный вес больше 50) относятся к числу важнейших. Тяжелые металлы - это медь, хром, цинк, молибден, марганец, свинец, кадмий, никель, мышьяк, ртуть, в очень малых количествах входят в состав биологически активных веществ, которые необходимы для нормальной жизнедеятельности растений и человека; они присутствуют в воздухе, которым мы дышим, в воде, которую пьем и которой моемся, в почве, где поглощаются растениями и вовлекаются в пищевые цепи и, соответственно, в нашей пище, в косметике и т.д.

Многие тяжелые металлы, такие как железо, медь, цинк, молибден, участвуют в биологических процессах и в определенных количествах являются необходимыми для функционирования растений, животных и человека микроэлементами. С другой стороны, тяжёлые металлы и их соединения могут оказывать вредное воздействие на организм человека, способны накапливаться в тканях, вызывая ряд заболеваний. Не имеющие полезной роли в биологических процессах металлы, такие как свинец и ртуть, определяются как токсичные металлы. Некоторые элементы, такие как ванадий или кадмий, обычно имеющие токсичное влияние на живые организмы, могут быть полезны для некоторых видов .

Средняя концентрация тяжелых металлов в почве около 10 мг на 1 кг. Как недостаток, так и избыток их в почве приведут к нежелательным последствиям. Некоторые тяжелые металлы (например, мышьяк) относится к разряду канцерогенов.

Ртуть - весьма токсичный яд кумулятивного действия (т. е. способный накапливаться), поэтому в молодых животных его меньше чем в старых, а в хищниках (тунец, меч-рыба, акула - 0,7 мг/кг) больше, чем в тех объектах, которыми они питаются. Поэтому хищной рыбой лучше не злоупотреблять в питании. Из других животных продуктов «накопителем» ртути являются почки животных (в сыром виде) - до 0,2 мг/кг; поскольку почки при кулинарной обработке предварительно многократно вымачивают по 2-3 ч со сменой воды и дважды вываривают, то в оставшемся продукте содержание ртути уменьшается почти в 2 раза. Из растительных продуктов ртуть больше всего содержится в орехах, какао-бобах и шоколаде (до 0,1 мг/кг). В большинстве остальных продуктов содержание ртути не превышает 0,01-0,03 мг/кг .

Ртуть может стимулировать изменения в нормальном развитии мозга детей, а в более высоких дозах вызывать неврологические изменения у взрослых. При хроническом отравлении развивается микромеркуриализм - заболевание, которое проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенности в себе, раздражительности, головных болях, дрожании конечностей.

Свинец - яд высокой токсичности. В большинстве растительных и животных продуктов естественное его содержание не превышает 0,5-1,0 мг/кг. Больше всего свинца содержится в хищных рыбах (в тунце до 2,0 мг/кг), моллюсках и ракообразных (до 10 мг/кг) . В основном повышение содержания свинца наблюдается консервах, помещенных в так называемую сборную жестяную тару которая спаивается сбоку и к крышке припоем, содержащим определенное количество свинца. К сожалению, пайка иногда бывает некачественная (образуются брызги припоя), и хотя консервные банки еще дополнительно покрываются специальным лаком это не всегда помогает. Имеются случаи, правда довольно редкие (до 2%), когда в консервах из этой тары накапливается, особенно при длительном хранении, до 3 мг/кг свинца и даже выше что, конечно, представляет опасность для здоровья, поэтому продукты в этой сборной жестяной таре не хранят более 5 лет.

Попадая в клетки, свинец (как и многие другие тяжелые металлы) дезактивирует ферменты, где реакция идет по сульфгидрильным группам белковых составляющих ферментов с образованием -S-Pb-S-. Свинец замедляет познавательное и интеллектуальное развитие детей, увеличивает кровяное давление и вызывает сердечно-сосудистые болезни взрослых. Изменения нервной системы проявляются в головной боли, головокружении, повышенной утомляемости, раздражительности, в нарушениях сна, ухудшении памяти, мышечной гипотонии, потливости. Свинец может заменять кальций в костях, становясь постоянным источником отравления. Органические соединения свинца еще более токсичны. Высокоэффективным связующим для попавшего в организм свинца оказался пектин, содержащийся в кожуре апельсинов.

В настоящее время установлены следующие максимальные уровни свинца в пищевых продуктах: молоко; продукты для новорожденных - 0,02 мг/кг; фрукты, овощи; мясо крупного рогатого скота, овец и свиней, птицы; жир животных и домашней птицы, растительные масла; молочный жир - 0,1 мг/кг; мелкие фрукты, яблоки и виноград; зерна злаков, бобы, вино - 0,2 мг/кг; съедобные субпродукты крупного рогатого скота, свиней и домашней птицы - 0,5 мг/кг.

Кадмий - это весьма токсичный элемент, в пищевых продуктах содержится примерно в 5-10 раз меньше, чем свинца. Повышенные концентрации его наблюдаются в какао-порошке (до 0,5 мг/кг), почках животных (до 1,0 мг/кг) и рыбе (до 0,2 мг/кг). Содержание кадмия увеличивается в консервах из сборной жестяной тары, так как кадмий, как и свинец, переходит в продукт из некачественно выполненного припоя, в котором также содержится определенное количество кадмия.

Повышенное содержание кадмия может произойти в результате попадания его из окружающей среды, например для выращивания сельскохозяйственных культур или животных используют территории, загрязненные кадмием . В этом случае группой риска являются овощи, фрукты, мясо, молоко. Пшеница содержит кадмия втрое больше, чем рожь. Кадмий накапливается, в первую очередь, в грибах, во многих растениях (особенно зерновых, овощных и стручковых культурах, а также орехах) и животных (прежде всего, водных). В растения тяжелый металл проникает из почвы. Одним почвам изначально свойственно повышенное содержание кадмия, другие загрязнены промышленными отходами или обработаны удобрениями, содержащими кадмий. Кадмия естественного в пищевых продуктах содержится примерно в 5-10 раз меньше, чем свинца. Повышенные концентрации его наблюдаются в какао-порошке (до 0,5 мг/кг), почках животных (до 1,0 мг/кг) и рыбе (до 0,2 мг/кг).

Кадмий по химическим свойствам родственен цинку, может замещать цинк в ряде биохимических процессов в организме, нарушая их (например, выступать как псевдоактиватор белков). Смертельной для человека может быть доза в 30-40 мг. Особенностью кадмия является большое время удержания: за 1 сутки из организма выводится около 0,1% полученной дозы.

Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (накопление в почках особенно интенсивно). Для курильщиков или занятых на производстве с использованием кадмия добавляется эмфизема легких.

Мышьяк, химический элемент, присутствующий во всей в окружающей среде, человек ни как не может его контролировать. Источник загрязнения пищи и воды мышьяком: бытовые отходы, выбросы промышленных предприятий, химические загрязнения, фермерство, пестициды на полях, которые затем вместе с дождем попадают в грунтовые воды и реки, не говоря уже и высоком уровне мышьяка в самой почве . Из-за его широкого распространения, мышьяк был в нашей пищевой цепи с начала времен. Исследования показывают, что на сегодняшний день уровень мышьяка повысился катастрофически, из-за деятельности человека.

Мышьяк содержится в следующих пищевых продуктах: белый и коричневый рис, яблочный сок, куриное мясо, коктейли белка и белковый порошок.

Длительное воздействие значительной концентрации мышьяка, провоцирует рак печени, почек, мочевого пузыря, легких или простаты. Признаки отравления мышьяком: понос, острые боли в животе, рвота, если доза слишком высока, организм ее не смог вывести, затем следует покалывание в ногах, руках, мышечные судороги и смерть. Если мышьяк регулярно присутствует в вашей питьевой воде, продуктах питания, вы не минуемо заболеете раком или появится кожная патология. Возможны и следующие последствия: развитие сердечно - сосудистых заболеваний, диабет. Регулярное отравление мышьяком в небольших дозах, проявляется изменением пигментации, гиперкератозом - чрезмерное утолщение рогового слоя кожи (на ладонях, подошвах ног), после пяти лет отравления неминуем рак кожи, гиперкератоз является предвестником рака кожи - это официальное заявление ВОЗ. В дополнение к раку кожи, длительное воздействие мышьяка, также может привести к раку мочевого пузыря и легких, повреждению кровеносных сосудов, бородавкам на коже и нарушений функций нервной системы. Международное агентство по изучению рака (МАИР) отнесла мышьяк и соединения мышьяка в нашей пище и воде, к канцерогенным веществам. Регулярное воздействие низкого уровня мышьяка на организм беременной приводит к дефектам у развивающегося плода.

Медь является важнейшим микроэлементом, необходимым организму для целого ряда функций - от формирования костей и соединительной ткани до выработки специфических ферментов. По рекомендации ВОЗ суточная потребность в меди для взрослых составляет 1,5 мг. Медь присутствует во всех тканях организма, но основные ее запасы находятся в печени, меньше - в мозге, сердце, почках и мышцах. Хотя медь и является третьим по количеству микроэлементом в организме человека после железа и цинка, всего-то ее содержится в теле около 75-100 мг.

Около 90% меди в крови находится в составе соединений, которые транспортируют железо в ткани, а также выступают в качестве ферментов, ускоряющих его окисление, то есть переработку, усваивание. Именно поэтому очень часто симптомы нехватки железа (например, низкий гемоглобин) на самом деле означают дефицит меди.

Кроме того, медь - компонент лизилоксидазы, фермента, который участвует в синтезе коллагена и эластина, двух важных структурных протеинов, находящихся в костях и соединительных тканях. Важнейший фермент тирозиназа, который превращает тирозин в меланин - пигмент, придающий цвет коже и волосам, также содержит медь. Также медь содержится в веществах, которые входят в состав меланинового покрытия, защищающего нервы.

Чрезмерное потребление меди может стать причиной болей и колик в животе, тошноты, диареи, рвоты, поражения печени. К тому же некоторые эксперты считают, что повышенный уровень меди, особенно при дефиците цинка, может быть фактором, провоцирующим шизофрению, гипертензию, депрессию, бессонницу, раннее старение и предменструальный синдром. Послеродовая депрессия также может быть следствием высокого уровня меди. Это происходит по причине того, что во время беременности медь накапливается в организме примерно в двойной дозе и требуется до трех месяцев, чтобы снизить ее уровень до нормального.

Поскольку избыток меди выделяется через желчь, отравление медью может случиться у людей с нарушениями работы печени или другими заболеваниями, связанными со сниженной функцией выделения желчи.

Токсичный эффект от повышенного уровня меди в тканях наблюдается у пациентов с болезнью Вильсона, генетическим расстройством способности аккумулировать медь в различных органах, что приводит к нарушениям синтеза белка для переноса меди в крови.

Содержание цинка в организме взрослого человека небольшое - 1,5-2 г. Суточная потребность в цинке составляет 10-15 мг. Верхний допустимый уровень потребления цинка установлен в 25 мг в сутки. Он действует на наш организм на уровне клеток, напрямую участвуя в обмене веществ: этот важнейший микроэлемент является частью всех витаминов, ферментов и гормонов, по сути, занимая 98% всех наших клеток.

Цинк незаменим для нормального функционирования тела человека и, конечно же, духа, ведь «в здоровом теле - здоровый дух». Наличие этого микроэлемента в организме обеспечивает человеку нормальную жизнедеятельность и хорошее самочувствие. Напротив, его недостаток может вызвать ряд серьёзных проблем: нарушения репродуктивной функции; сбои в работе иммунной системы; аллергические реакции; дерматит; плохое кровообращение; анемия; замедление процесса заживления; торможение нормального роста, полового созревания; потеря вкусовых качеств и обоняния; потеря волосяного покрова; у спортсменов - снижение полученных результатов; у подростков - склонность к алкоголизму; у беременных женщин - прерывание беременности; преждевременные роды; рождение ослабленных детей с низким весом.

Итак, больше всего цинка находится в зерновых и бобовых культурах и в орехах. Однако рекордсменами по содержанию этого полезного вещества в 100 гр являются устрицы. Также богаты цинком угри в отварном виде и пшеничные отруби, мясные изделия, сухие или прессованные дрожжи. Цинк содержится также в мясе птицы, сырах, луке, картофеле, чесноке, зелёных овощах, гречневой крупе, чечевице, сое, ячменной муке, сухих сливках, сельдерее, спарже, редьке, хлебе, цитрусовых, яблоках, инжире, финиках, чернике, малине, чёрной смородине .

Токсические элементы могут попасть в опасных для человека концентрациях в пищевые продукты из сырья и в процессе технологической обработки только при нарушении соответствующих технологических инструкций. Так, в растительном сырье они могут появиться при нарушении правил применения ядохимикатов, содержащих в своем составе такие токсические элементы, как ртуть, свинец, мышьяк и др. Повышенное количество токсических элементов может появиться в зоне вблизи промышленных предприятий, загрязняющих воздух и воду недостаточно очищенными отходами производства.

В таблице приведено содержание предельно допустимых концентраций тяжелых металлов (таблица 1).

В концентрированных растительных и животных продуктах (сушеных, сублимированных и т. д.) предельно допустимая концентрация тяжелых металлов определяется, как правило, при пересчете на исходный продукт.

Задача специалистов пищевой промышленности - постоянно контролировать пищевое сырье и готовую продукцию для того, чтобы обеспечить выпуск безвредных для здоровья продуктов питания.

В домашнем питании тоже необходим контроль, который заключается в предупреждении загрязнения консервированных продуктов свинцом. Рекомендуется вскрытые консервы из сборных жестяных банок, даже для кратковременного хранения помешать в стеклянную или фарфоровую посуду, так как под влиянием кислорода воздуха коррозия банок резко увеличивается и буквально через несколько дней содержание свинца (и олова) в продукте многократно возрастает. Нельзя также хранить маринованные, соленые и кислые овощи и фрукты в оцинкованной посуде во избежание загрязнения продуктов цинком и кадмием (цинковый слой также содержит некоторое количество кадмия) .

Нельзя хранить и приготавливать пищу в декоративной фарфоровой или керамической посуде (т. е. в посуде, предназначенной для украшения, но не для пищи), так как очень часто глазурь, особенно желтого и красного цвета, содержит соли свинца и кадмия, которые легко переходят в пищу, если такую посуду использовать для еды.

Таблица 1

Продукты

Свинец (Pb)

Кадмий (Cd)

Мышьяк (As)

Зернобобовые

Сахар и конфеты

Молоко и жидкие молочные

продукты

Масло растительное и изделия

Овощи, ягоды, фрукты свежие

и свежезамороженные

Овощи, ягоды, фрукты и изделия из них в сборной жестяной таре

Мясо и птица свежие

Мясо и птица консервированные

в сборной жестяной таре

Рыба свежая и мороженная

Рыба консервированная в сборной жестяной таре

Для приготовления и хранения продуктов следует использовать только посуду, специально предназначенную для пищевых целей. То же самое относится к красивым пластмассовым пакетам и пластмассовой посуде. В них можно хранить и то непродолжительное время только сухие продукты.

Для выведения из организма тяжелых элементов необходимо как можно чаще употреблять в пищу молочные продукты, содержащие кальций, большое количество клетчатки, больше овощей, сухофруктов и зерновых продуктов. Тогда тяжелые металлы будут оседать в желудочно-кишечном тракте, и выводиться из организма, не всасываясь.

Библиографическая ссылка

Сульдина Т.И. СОДЕРЖАНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПРОДУКТАХ ПИТАНИЯ И ИХ ВЛИЯНИЕ НА ОРГАНИЗМ // Рациональное питание, пищевые добавки и биостимуляторы. – 2016. – № 1. – С. 136-140;
URL: http://journal-nutrition.ru/ru/article/view?id=35727 (дата обращения: 28.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Металлы. Металлы находятся в продуктах питания, консервах и посуде (алюминий, олово, медь) и являются причиной различных расстройств. Восемь химических элементов (ртуть, кадмий, свинец, мышьяк, медь, стронций, цинк, железо) объединенный комитет экспертов ФАО/ВОЗ по Codex Alimentarms включил в число компонентов, содержание которых контролируется при международной торговле продуктами питания.

Рассмотрим основные из них.

Ртуть. Ртуть - это металл, занимающий особое место в истории цивилизации. Добыча золота и величайшие технические достижения в электронике и ядерной технике были бы невозможны без применения этого замечательного металла. В последние десятилетия становится все более очевидным, что ртутная интоксикация значима не только для персонала, работающего в производственных условиях, но и для большинства городского населения. Не случайно, что хронические отравления парами ртути в конце XX в., по мнению медиков, перешли из разряда профессиональных заболеваний в болезнь популяции. Несмотря на огромные усилия, предпринимаемые для замены ртутьсодержащих изделий на более безопасные, полностью избавиться от ее применения человечеству вряд ли удастся. Поэтому у нас нет другой альтернативы, как научиться держать ртуть под контролем и знать, где может подстерегать «ртутная опасность».

Ртуть - рассеянный элемент. В атмосферу поступает как в ходе природных процессов (испарение со всей поверхности суши; возгонка ртути из соединений, находящихся на большой глубине в толще земной коры; вулканическая деятельность), так и за счет антропогенной деятельности (пи- рометаллургическое получение металла и все процессы, в которых используется ртуть; сжигание любого органического топлива; цветная металлургия; термические процессы с нерудными материалами и т.п.).

Техногенно рассеиваемая ртуть (пары, водорастворимые соли, органические соединения) отличается геохимической подвижностью по сравнению с природными (преимущественно сульфидными, труднорастворимыми, малолетучими) соединениями ртути и поэтому более опасна в экологическом отношен™.

Поступившие в атмосферу пары ртути сорбируются аэрозолями, почвой, вымываются атмосферными осадками, включаясь в круговорот в почве и воде (ионизируются, превращаются в соли, подвергаются метилированию, усваиваются растениями и животными). В процессе аэрогенной, водной, почвенной и пищевой миграции Hg° превращается в Hg2+.

Метилирование неорганической ртути в донных отложениях озер, рек и других водотоков, а также океанов - ключевой этап процесса миграции ртути по пищевым цепям водных экосистем. Были выделены почвенные микроорганизмы, способные метилировать ртуть.

Метилирование ртути микроорганизмами подчиняется следующим закономерностям:

  • преобладающий продукт биологического метилирования ртути при pH, близком к нейтральному, - метилртуть;
  • скорость метилирования при окислительных условиях выше, чем при анаэробных;
  • количество образуемой метилртути удваивается при десятикратном увеличении содержания неорганической ртути;
  • повышенная скорость роста микроорганизмов увеличивает метилирование ртути.

Ртуть относится к числу микроэлементов, постоянно присутствующих в теле человека, но не является эссенци- альным микроэлементом.

Ртуть отличается высокой токсичностью для любых форм жизни.

Токсическое действие ртути зависит от вида соединения: алкилртутные соединения токсичнее неорганических. Наиболее токсичны алкилртутные соединения с короткой цепью - метилртуть, этилртуть. Они больше накапливаются в организме, лучше растворяются в липидах, легче проникают через биологические мембраны. Чувствительность нервной системы к метил- и этилртути выше, чем к другим соединениям.

В организм человека ртуть может попадать с продуктами питания растительного и животного происхождения, продуктами моря, атмосферным воздухом и водой. В производственных условиях основное значение имеет поступление ртути в организм через дыхательные пути в виде паров или пыли. Пары ртути полностью задерживаются в дыхательных путях, если концентрация их в воздухе не превышает 0,25 мг/м3.

Резорбция ртути в пищеварительном тракте зависит от типа соединения: резорбция неорганических соединений составляет 2-15%, фенилртути - 50-80, метилртути - 90- 95%. Метилртуть стабильна в организме, другие алкилртут- ные соединения быстрее трасформируются в неорганические.

При всех путях поступления ртуть накапливается преимущественно в почках, селезенке и печени. Органические соединения, хорошо связываясь с белками, легко проникают через гематоэнцефалический и плацентарный барьеры и накапливаются в головном мозге, в том числе и плода, где их концентрация в 1,5-2 раза больше, чем у матери. В мозговой ткани метилртути содержится в 5-6 раз больше, чем в крови.

Поступление ртути в организм отрицательно влияет на обмен пищевых веществ: неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена; органические соединения - обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена.

Выведение ртути из организма осуществляется всеми железами желудочно-кишечного тракта, почками, потовыми и молочными железами, легкими. В грудном молоке обычно содержится около 5% от ее концентрации в крови. Неорганические соединения выделяются преимущественно с мочой (период полувыведения из организма - 40 сут), а органические соединения на 90% выделяются с желчью и калом (период полувыведения из организма - 76 сут). Из организма новорожденных ртуть выделяется медленнее, чем у взрослых. Она выводится из организма неравномерно. По мере выделения ртуть мобилизуется из депо. По-видимому, различные стрессовые ситуации стимулируют мобилизацию ртути, с чем связывают периодические обострения при хроническом меркуриализме.

Ртуть накапливается преимущественно в ядре клетки, остальные субклеточные структуры по содержанию ртути располагаются в следующем порядке: микросомы, цитоплазма, митохондрии. Повреждающее действие ртути распространяется на все субклеточные структуры. В основе механизма действия ртути лежит блокада биологически активных групп белковой молекулы (сульфгидрильных, аминных, карбоксильных и др.) и низкомолекулярных соединений с образованием обратимых комплексов, характеризующихся нуклеофильными лигандами. Установлено включение ртути (Hg2+) в молекулу транспортной РНК, играющей центральную роль в биосинтезе белков.

В начальные сроки воздействия малых концентраций ртути имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Наблюдается возрастание моноаминооксидазной активности митохондриальной фракции печени. Установлено стимулирующее действие неорганических соединений ртути на развитие атеросклероза, но эта связь нерезко выражена.

Пары ртути проявляют нейротоксичность, от чего особенно страдают высшие отделы нервной системы. Вначале возбудимость коры больших полушарий повышается, затем возникает инертность корковых процессов. В дальнейшем развивается запредельное торможение.

Неорганические соединения ртути обладают нефроток- сичностью. Есть сведения о гонадотоксическом, эмбриоток- сическом и тератогенном действии соединений ртути.

Основные проявления хронического воздействия малых концентраций ртути следующие: повышенная нервозность, ослабление памяти, депрессивное состояние, парестезии на конечностях, мышечная слабость, эмоциональная лабильность, нарушение координации движений, симптомы поражения почек. К данной симптоматике могут присоединяться признаки поражения сердечно-сосудистой системы - аномальное повышение артериального давления, тахикардия, изменение электрической активности (ЭКГ). Все эти явления обусловлены воздействием ртути на энзиматическую активность в клетках, увеличением концентрации внутриклеточного кальция, ингибированием синтеза ДНК и РНК, нарушением цитоархитектоники микротрубочек, блокированием нейрорецепторов, ПОЛ в мембранах клеток мозга.

Болезнь Минамата - ртутная интоксикация алиментарного происхождения, обусловленная употреблением в пищу рыбы и других гидробионтов, выловленных из водоемов, загрязненн ых ртутью (Япония) (см. гл. 9).

Во многих странах мира отмечена сходная клиническая картина алиментарных ртутных интоксикаций, обусловленных употреблением протравленного ртутьорганическими соединениями посевного зерна, хлебобулочных изделий из него, а также мяса скота, получавшего это зерно с кормом. Латентный период данных заболеваний в зависимости от суточной дозы метилртути, поступившей в организм человека, составлял от 1-2 дней до нескольких недель.

Есть сообщения о защитном воздействии цинка и селена при поступлении в организм ртути. Защитное действие селена (в том числе содержащегося в рыбных продуктах, например в тунце) усматривают в деметилировании ртути с образованием нетоксичного селенортутного комплекса. Токсичность неорганических соединений ртути снижают аскорбиновая кислота и медь при их повышенном поступлении в организм, а органических соединений - протеины, цистеин, токоферолы. Пиридоксин, особенно при избыточном введении в организм, усиливает токсичность ртути.

При изучении болезни Минамата установлено, что под- пороговая суточная доза метилртути (по ртути) равняется 4 мкг/кг массы тела, т.е. около 0,3 мг для взрослого человека. Комитет экспертов ФАО/ВОЗ по пищевым добавкам, основываясь на расчетах с применением коэффициента безопасности 10, пришел к выводу, что поступление ртути в организм взрослого человека не должно превышать 0,3 мг в неделю и 0,05 мг в сутки, из которых не более 0,03 мг может составлять метилртуть. По данным ВОЗ, признаки интоксикации метилртутью у наиболее чувствительных к ней людей появляются тогда, когда концентрация ртути в крови превышает 150 мкг/л. Максимально безопасным для взрослого человека уровнем ртути в крови считается 100 мкг/л. Фоновое содержание ртути в волосах - 10-20 мкг/г, безопасным уровнем ртути в волосах считают 30-40 мкг/г. Содержание ртути в моче больше 10 мкг/сут свидетельствует о возможной опасности хронического отравления, а 50 мкг/сут, при наличии соответствующей симптоматики, служит подтверждением диагноза микромеркуриализма.

Медь. Медь - микроэлемент, широко распространенный в природе. Средние концентрации меди в воде рек и озер составляют 7 мкг/л, в океанах - 0,9 мкг/л. Важная роль в процессе миграции меди в гидросфере принадлежит гидро- бионтам; некоторые виды планктона концентрируют медь в 90 тыс. раз выше. Содержание меди в почвах составляет в среднем 15-20 мг/кг.

Биологическая роль меди - она входит в состав гематокупреина и других порфиринов животного мира, металло- ферментов, например цитохромоксидазы, лизилоксидазы. Последняя осуществляет формирование поперечных сшивок между полипептидными цепями коллагена и эластина. Недостаток меди приводит к образованию дефектного коллагена, что увеличивает вероятность разрыва стенок артерий. Дефицит меди может привести к анемии, незначительному замедлению физического развития детей, увеличению частоты сердечно-сосудистых заболеваний.

Суточная потребность взрослого человека в меди - 2-2,5 мг, т.е. 35-40 мкг/кг массы тела; при напряженной мышечной деятельности поступление меди не может быть ниже 4-5 мг, для детей - 80 мкг/кг.

В обычных условиях человек получает в сутки в среднем 2-5 мг меди, главным образом с пищей. Поступление через легкие незначительно.

При поступлении с пищей в кишечнике всасывается около 30% содержащейся меди. При повышенном поступлении меди в организм резорбция ее снижается, что уменьшает опасность интоксикации. Медь малотоксична. В зависимости от ее соединений ЛД50 для теплокровных животных варьирует от 140 до 200 мг/кг массы тела. У человека однократная доза 10-20 мг/кг массы тела вызывает тошноту, рвоту и другие симптомы интоксикации. Известны случаи, когда приготовление или подогревание кофе или чая в медной посуде вызывало у людей желудочно-кишечные расстройства.

Медь в количестве 5-15 мг/кг может придать металлический привкус воде, напиткам, пище. Повышенное содержание меди может обусловить уменьшение срока хранения пищевых жиров и жиросодержащих продуктов (они прогоркают, изменяют цвет). Медь катализирует окисление не только ненасыщенных жиров, но и аскорбиновой кислоты, она снижает ее количество в овощах, фруктах и соответствующих соках.

Механизм токсического действия меди связан с блокадой сульфгидрильных групп белков, в том числе ферментов.

Высокая гепатотоксичность меди и ее соединений связана с ее локализацией в лизосомах гепатоцитов и со способностью повышать проницаемость мембраны митохондрий. Интоксикации соединениями меди могут сопутствовать аутоиммунные реакции и нарушение метаболизма моноаминов. Острая интоксикация сопровождается выраженным гемолизом эритроцитов. При хронической интоксикации медью и ее солями возможны функциональные расстройства нервной системы (обнаружено сродство меди к симпатической нервной системе), печени и почек, изъязвление и перфорация носовой перегородки.

Эксперты ФАО пришли к выводу, что суточное потребление меди может составлять не более 0,5 мг/кг массы тела (до 30 мг в рационе) при нормальном содержании в пище молибдена и цинка - физиологических антагонистов меди.

Стронций. По химическим свойствам стронций сходен с кальцием и барием. По интенсивности поглощения стоит на четвертом месте после меди, цинка и бария.

Среднее содержание стронция в почвах - 0,035%. Нормой для растений считают концентрацию стронция в почве около 600 мг/кг, избыточное содержание - от 600 до 1000 мг/кг. При таких условиях становится реальной опасность возникновения уровской болезни. Наиболее богаты стронцием семейства зонтичных (0,044%), Виноградовых (0,037%); меньше всего его в злаковых (0,011%) и пасленовых (0,009%).

Стронций применяется в металлургии, в электровакуумной технике, как сплав со свинцом и оловом - в производстве аккумуляторов. Гидроксид стронция употребляют для изготовления стронциевых смазок, для выделения сахара из патоки; хлорид стронция - в холодильной промышленности, косметике и медицине; карбонат стронция входит в состав глазурей, стойких к атмосферным воздействиям.

Стронций содержится во всех тканях и органах человека, входит в состав скелета высших и низших животных. Стронций оказывает влияние на процессы костеобразования, активность ряда ферментов - каталазы, карбоангидразы, щелочной фосфатазы. На изолированные органы стронций действует как кальций, полностью заменяя его. Ионы Sr2+ настолько близки по характеристикам к Са2+, что включаются в обмен вместе с ним, но, обладая большей скоростью обмена и значительно отличаясь по размеру, они постепенно нарушают нормальную кальцификацию скелета.

Наиболее характерное проявление токсического действия стронция - уровская болезнь, клинические признаки которой - повышенная ломкость и уродливость костей. Предполагают, что рахитогенное действие стронция связано с блокированием биосинтеза одного из важных метаболитов витамина D и избыточным отложением фосфора в костях. Имеются указания на зобогенный эффект стронция, его действие как нервного и мышечного яда, способность хлорида стронция стимулировать продукцию тромбоксана В(2) тромбоцитами человека и оказывать местно-анестезирующее действие.

Цинк. Цинк относится к группе рассеянных элементов. Цинк - один из наиболее распространенных токсических компонентов крупномасштабного загрязнения Мирового океана, в настоящее время его содержание в поверхностном слое морской воды достигает 10-20 мкг/л. Среднее содержание цинка в почвах мира - 5-10~3%.

Цинк - компонент сплавов с цветными металлами (латунь, нейзильбер); применяется для защиты стальных и железных изделий от коррозии; служит в качестве наполнителя для резин; используется в производстве стекла, керамики, спичек, целлулоида, косметических средств. Соединения цинка служат пигментами для красок, компонентами для зубных цементов.

Антропогенными источниками поступления цинка в окружающую среду являются: выброс его в атмосферу при высокотемпературных технологических процессах (основной источник); шламы сточных вод и сами сточные воды химического, деревообрабатывающего, текстильного, бумажного, цементного производств, а также рудников, горно- обогатительных и плавильных заводов, металлургических комбинатов. Источник поступления цинка в воду - вымывание его горячей водой из оцинкованных водопроводных труб до 1,2-2,9 мг с поверхности 1 дм2 в сутки.

Содержание цинка в теле взрослого человека составляет 1-2,5 г, 30% депонируется в костях, 60% - в мышцах. Цинк всасывается в двенадцатиперстной кишке и верхнем отделе тонкой кишки. В печени часть цинка депонируется, часть трансформируется в меташюбелковые комплексы, в частности металлоэнзимы. Транспортируется цинк кровью в виде комплексов с белками, лишь незначительное количество содержится в ионной форме. Содержание цинка в цельной крови - 700-800 мкг%; из этого количества 75-85% находится в эритроцитах. С возрастом человека содержание цинка в теле нарастает. Выводится в основном через кишечник (10 мг/сут), с мочой (0,3-0,6 мг/сут), потом (в жаркую погоду до 2-3 мг/сут); может выводиться также с молоком.

В основе многих проявлений цинковой интоксикации лежат конкурентные отношения цинка с рядом металлов.

Избыточное поступление цинка в организм животных сопровождалось снижением уровня кальция в крови и в костях, одновременно нарушалось усвоение фосфора, в результате развивался остеопороз.

Цинк обладает кумулятивным токсическим эффектом даже при незначительном его содержании в воздухе, может представлять мутагенную и онкогенную опасность. Среди шведских горняков, добывающих цинк, наблюдается повышенная смертность от рака. Гонадотоксическое действие цинка проявляется снижением подвижности сперматозоидов и их способности проникать в яйцеклетку.

Железо. Железо - один из наиболее распространенных элементов земной коры (4,65% по массе); присутствует также в природных водах, где среднее содержание его колеблется в интервале 0,01-26,0 мг/л. Важный фактор миграции и перераспределения железа - биомасса Земли. Многие составные части пищевой цепи интенсивно накапливают железо. Активно аккумулирует его водная флора, причем интенсивность накопления зависит от времени года (концентрация возрастает к сентябрю). Интенсивная деятельность железобактерий приводит к тому, что железо в водоемах не рассеивается, а быстро окисляется и концентрируется в донных отложениях. Животные организмы аккумулируют железо в меньших количествах, чем растения.

Антропогенные источники поступления железа в окружающую среду: локальная техногенная аномалия - зона металлургических комбинатов, в твердых выбросах которых железо содержится в количестве от 22 ООО до 31 ООО мг/кг, что сопровождается избыточным его поступлением в почву и растения. Большую опасность представляют сточные воды и шламы металлургического, химического, машиностроительного, нефтехимического, химико-фармацевтического, лакокрасочного, текстильного производств.

В организме здорового взрослого человека содержится 4-5 г железа, ежедневные его потери составляют 0,5-1,3 мг. Суточная потребность в железе взрослого человека - 11-30 мг. Она значительно возрастает при беременности, кормлении грудью, при интенсивной мышечной деятельности. В основных пищевых продуктах содержится следующее количество железа (мкг/100 мг съедобной части): хлеб- 4000, мясо - 3000, рыба - 1000, картофель - 900, овощи - 700, фрукты - 600, молоко - 70; в среднем суточный рацион - около 28 мг.

Метаболизм железа определяется двумя принципиальными моментами: процессом всасывания железа и запасом железа в организме.

Всосавшееся в желудочно-кишечном тракте восстановленное железо транспортируется кровью в виде ферритина, где оно связано с Р,-глобулиновой фракцией белков.

Основная масса металла выводится с калом, меньше - с мочой и потом, у кормящих матерей может выводиться с молоком.

Развитие дефицита железа в организме связано с дисбалансом других микроэлементов:

  • недостаток фтора приводит к снижению утилизации железа и меди;
  • у жителей высокогорных районов увеличенный метаболизм железа сопровождается значительным накоплением магния в эритроцитах;
  • дефицит цинка приводит к развитию тяжелого симпто- мокомплекса железодефицитной анемии с гепатомегалией, карликовостью, половым недоразвитием и нарушением волосяного покрова (болезнь Прасада);
  • важное значение в возникновении железодефицитных состояний имеет недостаток меди, марганца, кобальта.

Источником избыточного поступления железа в организм человека могут стать пищевые продукты, длительно хранящиеся в луженых молочных флягах. Есть данные об отсутствии железодефицитных анемий у женщин, использующих для приготовления пищи железную посуду. В то же время у племени банту в связи с высоким содержанием железа в пищевом рационе отмечены сидероз печени и селезенки и связанные с ними случаи остеопороза.

Соединения Fe2+ обладают общим токсическим действием: у крыс, кроликов при поступлении в желудок наблюдались параличи, смерть в судорогах (причем хлориды токсичнее сульфатов). Fe2+ активно участвует в реакциях с радикалами гидроперекисей липидов:

  • небольшое содержание Fe2+ инициирует ПОЛ в митохондриях;
  • возрастание содержания Fe2+ приводит к разрушению гидроперекисей липидов.

Соединения Fe3+ менее ядовиты, но действуют прижига- юще на пищеварительный тракт и вызывают рвоту.

Железо обладает сенсибилизирующим эффектом по клеточно-опосредованному типу, не вызывает реакций немедленного типа. Соединения железа избирательно действуют на различные звенья иммунной системы: стимулируют Т-системы и снижают показатели состояния неспецифической резистентности и общего пула иммуноглобулинов.

Высокое потребление с пищей железа предрасполагает к сердечно-сосудистым заболеваниям. Существует точка зрения, что циклические менструации, связанные с кровопоте- рей, влекут за собой потерю железа, что резко снижает риск сердечно-сосудистой патологии у женщин в предклимакте- рическом периоде. В начале менопаузы уровни запасенного железа быстро возрастают, и вероятность сердечно-сосудистых заболеваний возрастает.

Долгое время бытовало мнение о необходимости обогащения продуктов питания железом с целью борьбы с железодефицитными состояниями. Однако в последние годы появились сомнения в отношении этого из-за того, что железо может быть причиной ряда заболеваний.

Железо более опасно при воздействии per os, по сравнению с его действием на кожу. Аллергенная активность содержащих железо вод возрастает с увеличением температуры воды с 20 до 38 °С. При накожном воздействии сенсибилизирующий эффект наиболее выражен у Fe3+. Концентрация железа в воде на уровне 2,0-5,0 мг/л близка к порогу аллергенного действия на человека.

Алюминий. Этот металл широко применяется в машино- и самолетостроении, для приготовления упаковочных материалов, в медицине как антоцид при лечении гастритов, язв и др. Широко распространен в окружающей среде. Для организма - чужеродный элемент, так как в выполнении каких-либо биологических функций у млекопитающих не участвует.

Уже указывалось в гл. 8, что алюминий содержится в повышенных количествах в некоторых растениях и получает большую растворимость и подвижность в кислых почвах, т.е. при выпадении кислотных осадков.

Среднее потребление алюминия человеком составляет 30-50 мг в день. Это количество складывается из содержания его в продуктах питания, питьевой воде и лекарственных препаратах. Четверть от этого количества приходится на воду.

Основные источники алюминия - алюминиевая посуда и упаковочный материал, имеющий покрытие из алюминиевой фольги. Кислые консервированные продукты питания и напитки (маринованные огурцы, кока-кола) могут содержать сами по себе небольшие количества алюминия. Он поступает также с некоторыми продуктами питания, например с морковью, которая может содержать до 400 мг/кг этого металла. Другим источником алюминия является чайный лист. Эпидемиологические исследования, проведенные канадским Министерством здравоохранения и социального обеспечения в 1993 г., показали, что пациенты с болезнью Альцгеймера в среднем употребляли чай в 2,5 раза чаще других людей. Некоторые традиционные, часто употребляемые лекарственные соединения (антациды, забуференный аспирин) также содержат в своем составе алюминий.

Известно, что алюминий резорбируется в относительно небольших количествах в ЖКТ - около 1%. После резорбции комплексируется преимущественно с трансферрином и распределяется по организму: в легких может накапливаться до 50 мг/кг, в мышцах и костях - около 10 мг/кг, в мозгу - около 2 мг/кг и в сыворотке крови - около 10 мкг/л. Удаляется из организма почти исключительно через почки.

Установлено, что алюминий способен замедлять образование костной ткани, что в дальнейшем может сопровождаться ее резорбцией. Кроме того, этот трехвалентный металл тормозит в ЖКТ всасывание фтора, кальция, железа и неорганического фосфата. Алюминий способен влиять на моторику ЖКТ путем торможения индуцированного аце- тилхолином сокращения гладких мышц кишечной стенки. Эти явления отмечаются часто у пациентов, принимающих алюминийсодержащие антацидные препараты.

С накоплением в организме алюминия связывают возникновение болезни Альцгеймера - медленно прогрессирующего дегенеративного, неврологического заболевания. Накопление в тканях мозга алюминия сопровождается быстро- протекающими дегенеративными изменениями в подкорковых ганглиях, вторичной гидроцефалией, деструкцией гиппокампа, ядер переднего мозга. Биохимически для болезни Альцгеймера характерно угнетение холинэргических нейротрансмиттеров, в частности ацетилхолинэстеразы и других энзимов, обеспечивающих холинэргические механизмы.

При данном заболевании алюминий связывается и с ядерным хроматином, в частности с ДНК, что ведет к глубокому нарушению механизмов транскрипции в нейронах.

Алюминий способен концентрироваться в ядрах нейронов, в их цитоплазме формируются характерные для болезни Альцгеймера парные спиралевидные нейрофиламенты, обнаруживаемые при электронной микроскопии. Нейро- фибриллярный аппарат пораженных нейронов подвергается тяжелым необратимым изменениям, что в свою очередь влечет за собой глубокие нарушения аксонального транспорта, определенную дисгармонию рецепторной активности и характерную дегенерацию дендритов. И хотя довольно точно доказано отложение алюминия в ЦНС, трактовка болезни Альцгеймера только как злокачественной формы ней- роалюминоза неоднозначна, так как в патогенезе этого заболевания принимают участие и другие факторы (иммуно- цитохимические, генетические).

  • Транскрипт

    1 136 УДК:613.2 СОДЕРЖАНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПРОДУКТАХ ПИТАНИЯ И ИХ ВЛИЯНИЕ НА ОРГАНИЗМ Сульдина Т.И. АНО ОВО ЦС РФ «Российский университет кооперации» Саранский кооперативный институт (филиал), Саранск, Металлы являются элементами, необходимые для полноценной жизнедеятельности и нормального функционирования организма в допустимых количествах в продуктах питания. Но в то же время избыточное содержание тяжелых металлов наносит вред на организм человека, вызывая ряд заболеваний. Они могут попасть в продукты питания различными способами: через воздух, почву, воду, или же вследствие нарушений правил технологической обработки пищевых продуктов и сырья. Поэтому необходимо иметь представление о содержании предельно допустимого содержания тяжелых металлов и их последствий, чему и посвящена статья в изучении действий тяжелых металлов на целостную живую систему. Ключевые слова: тяжелые металлы, заболевание, ПДК. THE CONTENT OF HEAVY METALS IN FOOD AND THEIR EFFECTS ON THE BODY Suldina T.I. ANO OWO CA of the Russian Federation «Russian University of cooperation» Saransk cooperative Institute (branch), Saransk, Metals are elements that are necessary for a full life and normal functioning of the body in allowed quantities in foods. But at the same time, the excessive content of heavy metals harmful to the human body, causing a number of diseases. They can get into food in a variety of ways: through the air, soil, water, or due to violations of rules of technological processing of food products and raw materials. It is therefore necessary to have an idea about the maximum permissible content of heavy metals and their consequences, and what the article is devoted to the study of the action of heavy metals on holistic living system. Keywords: heavy metals, disease, MPC. Среди загрязнителей биосферы, представляющих наибольший интерес для различных служб контроля ее качества, металлы (в первую очередь тяжелые, то есть имеющие атомный вес больше 50) относятся к числу важнейших. Тяжелые металлы это медь, хром, цинк, молибден, марганец, свинец, кадмий, никель, мышьяк, ртуть, в очень малых количествах входят в состав биологически активных веществ, которые необходимы для нормальной жизнедеятельности растений и человека; они присутствуют в воздухе, которым мы дышим, в воде, которую пьем и которой моемся, в почве, где поглощаются растениями и вовлекаются в пищевые цепи и, соответственно, в нашей пище, в косметике и т.д. Многие тяжелые металлы, такие как железо, медь, цинк, молибден, участвуют в биологических процессах и в определенных количествах являются необходимыми для функционирования растений, животных и человека микроэлементами. С другой стороны, тяжёлые металлы и их соединения могут оказывать вредное воздействие на организм человека, способны накапливаться в тканях, вызывая ряд заболеваний. Не имеющие полезной роли в биологических процессах металлы, такие как свинец и ртуть, определяются как токсичные металлы. Некоторые элементы, такие как ванадий или кадмий, обычно имеющие токсичное влияние на живые организмы, могут быть полезны для некоторых видов . Средняя концентрация тяжелых металлов в почве около 10 мг на 1 кг. Как недостаток, так и избыток их в почве приведут к нежелательным последствиям. Некоторые тяжелые металлы (например, мышьяк) относится к разряду канцерогенов. Ртуть весьма токсичный яд кумулятивного действия (т. е. способный накапливаться), поэтому в молодых животных его меньше чем в старых, а в хищниках (тунец, меч-рыба, акула 0,7 мг/кг) больше, чем в тех объектах, которыми они питаются. Поэтому хищной рыбой лучше не злоупотреблять в питании. Из других животных продуктов «накопителем» ртути являются почки животных (в сыром виде) до 0,2 мг/кг; поскольку почки при кулинарной обработке предварительно многократно вымачивают по 2 3 ч со сменой воды и дважды вываривают, то в оставшемся продукте содержание

    2 137 ртути уменьшается почти в 2 раза. Из растительных продуктов ртуть больше всего содержится в орехах, какао-бобах и шоколаде (до 0,1 мг/кг). В большинстве остальных продуктов содержание ртути не превышает 0,01 0,03 мг/кг . Ртуть может стимулировать изменения в нормальном развитии мозга детей, а в более высоких дозах вызывать неврологические изменения у взрослых. При хроническом отравлении развивается микромеркуриализм заболевание, которое проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенности в себе, раздражительности, головных болях, дрожании конечностей. Свинец яд высокой токсичности. В большинстве растительных и животных продуктов естественное его содержание не превышает 0,5 1,0 мг/кг. Больше всего свинца содержится в хищных рыбах (в тунце до 2,0 мг/кг), моллюсках и ракообразных (до 10 мг/кг) . В основном повышение содержания свинца наблюдается консервах, помещенных в так называемую сборную жестяную тару которая спаивается сбоку и к крышке припоем, содержащим определенное количество свинца. К сожалению, пайка иногда бывает некачественная (образуются брызги припоя), и хотя консервные банки еще дополнительно покрываются специальным лаком это не всегда помогает. Имеются случаи, правда довольно редкие (до 2%), когда в консервах из этой тары накапливается, особенно при длительном хранении, до 3 мг/кг свинца и даже выше что, конечно, представляет опасность для здоровья, поэтому продукты в этой сборной жестяной таре не хранят более 5 лет. Попадая в клетки, свинец (как и многие другие тяжелые металлы) дезактивирует ферменты, где реакция идет по сульфгидрильным группам белковых составляющих ферментов с образованием S Pb S. Свинец замедляет познавательное и интеллектуальное развитие детей, увеличивает кровяное давление и вызывает сердечно-сосудистые болезни взрослых. Изменения нервной системы проявляются в головной боли, головокружении, повышенной утомляемости, раздражительности, в нарушениях сна, ухудшении памяти, мышечной гипотонии, потливости. Свинец может заменять кальций в костях, становясь постоянным источником отравления. Органические соединения свинца еще более токсичны. Высокоэффективным связующим для попавшего в организм свинца оказался пектин, содержащийся в кожуре апельсинов. В настоящее время установлены следующие максимальные уровни свинца в пищевых продуктах: молоко; продукты для новорожденных 0,02 мг/кг; фрукты, овощи; мясо крупного рогатого скота, овец и свиней, птицы; жир животных и домашней птицы, растительные масла; молочный жир 0,1 мг/кг; мелкие фрукты, яблоки и виноград; зерна злаков, бобы, вино 0,2 мг/кг; съедобные субпродукты крупного рогатого скота, свиней и домашней птицы 0,5 мг/кг. Кадмий это весьма токсичный элемент, в пищевых продуктах содержится примерно в 5 10 раз меньше, чем свинца. Повышенные концентрации его наблюдаются в какао-порошке (до 0,5 мг/кг), почках животных (до 1,0 мг/кг) и рыбе (до 0,2 мг/кг). Содержание кадмия увеличивается в консервах из сборной жестяной тары, так как кадмий, как и свинец, переходит в продукт из некачественно выполненного припоя, в котором также содержится определенное количество кадмия. Повышенное содержание кадмия может произойти в результате попадания его из окружающей среды, например для выращивания сельскохозяйственных культур или животных используют территории, загрязненные кадмием . В этом случае группой риска являются овощи, фрукты, мясо, молоко. Пшеница содержит кадмия втрое больше, чем рожь. Кадмий накапливается, в первую очередь, в грибах, во многих растениях (особенно зерновых, овощных и стручковых культурах, а также орехах) и животных (прежде всего, водных). В растения тяжелый металл проникает из почвы. Одним почвам изначально свойственно повышенное содержание кадмия, другие загрязнены промышленными отходами или обработаны удобрениями, содержащими кадмий. Кадмия естественного в пищевых продуктах содержится примерно в 5 10 раз меньше, чем свинца. Повышенные концентрации его наблюдаются в какао-порошке (до 0,5 мг/кг), почках животных (до 1,0 мг/кг) и рыбе (до 0,2 мг/кг). Кадмий по химическим свойствам родственен цинку, может замещать цинк в ряде биохимических процессов в организме, нарушая их (например, выступать как псевдоактиватор белков). Смертельной для человека может быть доза в мг. Особенно-

    3 138 стью кадмия является большое время удержания: за 1 сутки из организма выводится около 0,1% полученной дозы. Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (накопление в почках особенно интенсивно). Для курильщиков или занятых на производстве с использованием кадмия добавляется эмфизема легких. Мышьяк, химический элемент, присутствующий во всей в окружающей среде, человек ни как не может его контролировать. Источник загрязнения пищи и воды мышьяком: бытовые отходы, выбросы промышленных предприятий, химические загрязнения, фермерство, пестициды на полях, которые затем вместе с дождем попадают в грунтовые воды и реки, не говоря уже и высоком уровне мышьяка в самой почве . Из-за его широкого распространения, мышьяк был в нашей пищевой цепи с начала времен. Исследования показывают, что на сегодняшний день уровень мышьяка повысился катастрофически, из-за деятельности человека. Мышьяк содержится в следующих пищевых продуктах: белый и коричневый рис, яблочный сок, куриное мясо, коктейли белка и белковый порошок. Длительное воздействие значительной концентрации мышьяка, провоцирует рак печени, почек, мочевого пузыря, легких или простаты. Признаки отравления мышьяком: понос, острые боли в животе, рвота, если доза слишком высока, организм ее не смог вывести, затем следует покалывание в ногах, руках, мышечные судороги и смерть. Если мышьяк регулярно присутствует в вашей питьевой воде, продуктах питания, вы не минуемо заболеете раком или появится кожная патология. Возможны и следующие последствия: развитие сердечно сосудистых заболеваний, диабет. Регулярное отравление мышьяком в небольших дозах, проявляется изменением пигментации, гиперкератозом чрезмерное утолщение рогового слоя кожи (на ладонях, подошвах ног), после пяти лет отравления неминуем рак кожи, гиперкератоз является предвестником рака кожи это официальное заявление ВОЗ. В дополнение к раку кожи, длительное воздействие мышьяка, также может привести к раку мочевого пузыря и легких, повреждению кровеносных сосудов, бородавкам на коже и нарушений функций нервной системы. Международное агентство по изучению рака (МАИР) отнесла мышьяк и соединения мышьяка в нашей пище и воде, к канцерогенным веществам. Регулярное воздействие низкого уровня мышьяка на организм беременной приводит к дефектам у развивающегося плода. Медь является важнейшим микроэлементом, необходимым организму для целого ряда функций от формирования костей и соединительной ткани до выработки специфических ферментов. По рекомендации ВОЗ суточная потребность в меди для взрослых составляет 1,5 мг. Медь присутствует во всех тканях организма, но основные ее запасы находятся в печени, меньше в мозге, сердце, почках и мышцах. Хотя медь и является третьим по количеству микроэлементом в организме человека после железа и цинка, всего-то ее содержится в теле около мг. Около 90% меди в крови находится в составе соединений, которые транспортируют железо в ткани, а также выступают в качестве ферментов, ускоряющих его окисление, то есть переработку, усваивание. Именно поэтому очень часто симптомы нехватки железа (например, низкий гемоглобин) на самом деле означают дефицит меди. Кроме того, медь компонент лизилоксидазы, фермента, который участвует в синтезе коллагена и эластина, двух важных структурных протеинов, находящихся в костях и соединительных тканях. Важнейший фермент тирозиназа, который превращает тирозин в меланин пигмент, придающий цвет коже и волосам, также содержит медь. Также медь содержится в веществах, которые входят в состав меланинового покрытия, защищающего нервы. Чрезмерное потребление меди может стать причиной болей и колик в животе, тошноты, диареи, рвоты, поражения печени. К тому же некоторые эксперты считают, что повышенный уровень меди, особенно при дефиците цинка, может быть фактором, провоцирующим шизофрению, гипертензию, депрессию, бессонницу, раннее старение и предменструальный синдром. Послеродовая депрессия также может быть следствием высокого уровня меди. Это происходит по причине того, что во время беременности медь накапливается в организме примерно в двойной дозе и требуется до трех

    4 139 месяцев, чтобы снизить ее уровень до нормального. Поскольку избыток меди выделяется через желчь, отравление медью может случиться у людей с нарушениями работы печени или другими заболеваниями, связанными со сниженной функцией выделения желчи. Токсичный эффект от повышенного уровня меди в тканях наблюдается у пациентов с болезнью Вильсона, генетическим расстройством способности аккумулировать медь в различных органах, что приводит к нарушениям синтеза белка для переноса меди в крови. Содержание цинка в организме взрослого человека небольшое 1,5-2 г. Суточная потребность в цинке составляет мг. Верхний допустимый уровень потребления цинка установлен в 25 мг в сутки. Он действует на наш организм на уровне клеток, напрямую участвуя в обмене веществ: этот важнейший микроэлемент является частью всех витаминов, ферментов и гормонов, по сути, занимая 98% всех наших клеток. Цинк незаменим для нормального функционирования тела человека и, конечно же, духа, ведь «в здоровом теле здоровый дух». Наличие этого микроэлемента в организме обеспечивает человеку нормальную жизнедеятельность и хорошее самочувствие. Напротив, его недостаток может вызвать ряд серьёзных проблем: нарушения репродуктивной функции; сбои в работе иммунной системы; аллергические реакции; дерматит; плохое кровообращение; анемия; замедление процесса заживления; торможение нормального роста, полового созревания; потеря вкусовых качеств и обоняния; потеря волосяного покрова; у спортсменов снижение полученных результатов; у подростков склонность к алкоголизму; у беременных женщин прерывание беременности; преждевременные роды; рождение ослабленных детей с низким весом. Итак, больше всего цинка находится в зерновых и бобовых культурах и в орехах. Однако рекордсменами по содержанию этого полезного вещества в 100 гр являются устрицы. Также богаты цинком угри в отварном виде и пшеничные отруби, мясные изделия, сухие или прессованные дрожжи. Цинк содержится также в мясе птицы, сырах, луке, картофеле, чесноке, зелёных овощах, гречневой крупе, чечевице, сое, ячменной муке, сухих сливках, сельдерее, спарже, редьке, хлебе, цитрусовых, яблоках, инжире, финиках, чернике, малине, чёрной смородине . Токсические элементы могут попасть в опасных для человека концентрациях в пищевые продукты из сырья и в процессе технологической обработки только при нарушении соответствующих технологических инструкций. Так, в растительном сырье они могут появиться при нарушении правил применения ядохимикатов, содержащих в своем составе такие токсические элементы, как ртуть, свинец, мышьяк и др. Повышенное количество токсических элементов может появиться в зоне вблизи промышленных предприятий, загрязняющих воздух и воду недостаточно очищенными отходами производства. В таблице приведено содержание предельно допустимых концентраций тяжелых металлов (таблица 1). В концентрированных растительных и животных продуктах (сушеных, сублимированных и т. д.) предельно допустимая концентрация тяжелых металлов определяется, как правило, при пересчете на исходный продукт. Задача специалистов пищевой промышленности постоянно контролировать пищевое сырье и готовую продукцию для того, чтобы обеспечить выпуск безвредных для здоровья продуктов питания. В домашнем питании тоже необходим контроль, который заключается в предупреждении загрязнения консервированных продуктов свинцом. Рекомендуется вскрытые консервы из сборных жестяных банок, даже для кратковременного хранения помешать в стеклянную или фарфоровую посуду, так как под влиянием кислорода воздуха коррозия банок резко увеличивается и буквально через несколько дней содержание свинца (и олова) в продукте многократно возрастает. Нельзя также хранить маринованные, соленые и кислые овощи и фрукты в оцинкованной посуде во избежание загрязнения продуктов цинком и кадмием (цинковый слой также содержит некоторое количество кадмия) . Нельзя хранить и приготавливать пищу в декоративной фарфоровой или керамической посуде (т. е. в посуде, предназначенной для украшения, но не для пищи), так как очень часто глазурь, особенно желтого и красного цвета, содержит соли свинца и кадмия, которые легко переходят в пищу, если такую посуду использовать для еды.

    5 140 Содержание ПДК тяжелых металлов в основных продуктах питания Таблица 1 Продукты Свинец (Pb) Кадмий (Cd) Мышьяк (As) Ртуть (Hg) Медь (Cu) Цинк (Zn) Зернобобовые 0,5 0,1 0,2-0,3 0,02-0, Сахар и конфеты 1,0 0,1 0,5 0,02-0, Молоко и жидкие молочные продукты 0,1 0,03 0,05 0,005 1,0 5 Масло растительное и изделия из него 0,1 0,05 0,1 0,05 1, Овощи, ягоды, фрукты свежие и свежезамороженные 0,04-0,5 0,03 0,2 0,02 5,0 10,0 Овощи, ягоды, фрукты и изделия из них в сборной жестяной таре 1,0 0,05 0,2 0,02 5,0 10,0 Мясо и птица свежие 0,5 0,05 0,1 0,03 5,0 20 Мясо и птица консервированные в сборной жестяной таре 1,0 0,1 0,1 0,03 5,0 70 Рыба свежая и мороженная 1,0 0,2 1,0-5,0 0,3-0, Рыба консервированная в сборной жестяной таре 1,0 0,2 1,0-5,0 0,3-0, Напитки 0,1-0,3 0,01-0,03 0,1-0,2 0,005 1,0-5,0 5,0-10 Для приготовления и хранения продуктов следует использовать только посуду, специально предназначенную для пищевых целей. То же самое относится к красивым пластмассовым пакетам и пластмассовой посуде. В них можно хранить и то непродолжительное время только сухие продукты. Для выведения из организма тяжелых элементов необходимо как можно чаще употреблять в пищу молочные продукты, содержащие кальций, большое количество клетчатки, больше овощей, сухофруктов и зерновых продуктов. Тогда тяжелые металлы будут оседать в желудочно-кишечном тракте, и выводиться из организма, не всасываясь. Список литературы 1. Жидкин В.И., Сульдина Т.И. Радиоактивные загрязнения пищевых продуктов, их последствия для здоровья человека и радиозащита питанием // Интеграция образования в условиях инновационной экономики: материалы Междунар. науч.-практ. конф.: в 2 частях. Саранск, С Жидкин В.И., Семушев А.М. Основные загрязнители продовольственного сырья и пищевых продуктов // Вторые чтения памяти профессора О.А. Зауралова: материалы Междунар. науч.-практ. конф. (Саранск, 12 мая 2010 г.). Саранск, С Жидкин В.И., Семушев А.М. Пути загрязнения продовольствия // Третьи чтения памяти профессора О.А. Зауралова: материалы Междунар. науч.-практ. конф. (Саранск, 13 мая 2011 г.). Саранск, С Семушев А.М. Влияние загрязнителей на качество продовольственных товаров растительного происхождения // Кооперация в системе общественного воспроизводства: материалы Междунар. науч.-практ. конф. (Саранск, 9-10 апр г.) в 2 ч. Саранск: Принт-Издат, Ч. 2. С Жидкин В.И., Семушев А.М. Загрязнение пищевых продуктов нитратами, пестицидами и тяжелыми металлами // Предпринимательство С Жидкин В.И., Семушев А.М. Экология. Загрязнение продовольственных товаров: учебное пособие. Саран. кооп. ин-т РУК. Саранск: Принт-Издат, с. 7. Позняковский В.М. Гигиенические основы питания, безопасность и экспертиза товаров. 5-е изд., испр. и доп. / Гриф МО и науки РФ. Новосибирск: Сибир. универ. издво, с.


    Утверждаю Главный государственный санитарный врач СССР П.Н.БУРГАСОВ 31 марта 1986 г. N 4089-86 ПРЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ ТЯЖЕЛЫХ МЕТАЛЛОВ И МЫШЬЯКА В ПРОДОВОЛЬСТВЕННОМ СЫРЬЕ И ПИЩЕВЫХ ПРОДУКТАХ

    Значение витаминов и минеральныхвеществ в рационе питания младшего школьника. Профилактикавитаминной недостаточности. Витамины и минеральные вещества - обязательные компоненты питания младшего школьника.

    Соли в медицине Минеральные вещества представляют собой не только строительный материал. Они необходимы для регулирования жизненно важных процессов: обмена веществ, пищеварения, передачи нервных импульсов

    Недостаточный вес: пути повышения Недостаточное питание Пониженное питание Нормальный вес 18-25 лет ИМТ менее 18,5 ИМТ 18,5 19,4 ИМТ 19,5-22,9 26-45 лет ИМТ менее 19,0 ИМТ 19,0 19,9 ИМТ 20,0-25,9 Причины

    Металлы друзья или враги здоровья? Содержание: Введение Вредные металлы Друзья здоровья Возможна ли замена металлов Интересные факты Вывод Вопросы Использованная литература Авторы Введение: Металлы вредны

    Здоровье во многом зависит от того, насколько правильно мы питаемся. Более того, фактор питания играет важную роль в лечении многих заболеваний. Многие считают так: были бы продукты под руками, а мы уж

    Чтобы нормально расти и развиваться, школьникам требуются бесперебойные поставки минеральных веществ и витаминов. Витамин А (ретинол) Источники: морковь, зелёный салат, персики, абрикосы, арбузы, кукуруза,

    Правильное и здоровое питание детей Подготовила воспитатель ДОУ 62 «Золотая рыбка» Семенова Наталья Юрьевна. Правильное питание-основа здоровья ребёнка. Правильное питание для детей это получение ребенком

    1 Витамины и микроэлементы почему они так важны? ВИТАМИНЫ Витамин А. Участвует в образовании зрительных пигментов, поддерживает целостность кожи и слизистых оболочек, в частности, роговицы и конъюктивы.

    Всё, что нужно знать о витаминах и минералах. Часть 2 Подробнее о минералах. В первой части статьи мы рассмотрели химические соединения, ответственные за множество функций организма витамины. На этот раз

    Подготовил 6Б класс Здоровое питание залог успеха в учебном году Правильное питание - это основа здоровья человека. Пища единственный источник, с которым учащийся получает необходимый пластический материал

    10 полезных продуктов для женщин Какие продукты необходимо включить женщине в свой рацион, чтобы оставалась здоровой и энергичной? Женское здоровье и красота требуют особого внимания и заботы. Каждая женщина

    Здоровая пища Все мы хотим быть молодыми, красивыми и здоровыми. Очень многие забывают о том, что залогом всего этого есть здоровое питание. В наше время появляется все больше и больше не качественной

    Ежегодно «Всемирный день здорового питания» отмечается 16 октября. Цель Всемирного дня здорового питания - привлечение внимания общественности к проблемам питания в современном обществе. Питание один из

    История применения цинка, как биологически активного минерала, уходит в глубокую древность. Цинковой мазью пользовались при кожных болезнях и для ускорения заживления ран еще в Древнем Египте 5000 лет

    Продукты, повышающие гемоглобин Уровень гемоглобина во многом определяет состояние здоровья людей. Гемоглобин, содержащийся в крови, представляет собой сложный белок, составляющий эритроциты (красные кровяные

    Корнякова О.В., учитель-дефектолог Питание для здоровья глаз altarta.com Для обеспечения хорошего зрения в организм должно поступать достаточное количество витаминов. Витамины это органические вещества,

    Витамины в нашей жизни Составители: воспитатели Селиванова Л.П. Гостяева Е.Ю. Из истории Витамины это органические вещества. Как правило, они не синтезируются в организме и поэтому должны поступать с пищей.

    Таблетки с витаминами группы В «Тяньши» ru.tiens.com Вам это знакомо? Заеда (ангулярный хейлит) Боли в языке Шершавость Дерматит Потрескавшиеся губы Анемия (малокровие) Раздражительность Повышенная утомляемость

    Здоровье человека это главная ценность в жизни Цехмейстер Ирина Николаевна, учитель начальных классов МБОУ «Гимназия 1» г. Ноябрьск, ЯНАО, Тюменская область Зачем нужны витамины В отличие от основных компонентов

    Питание беременной женщины Беременность и лактация (образование и выделение молока молочной железой) - это сложный биологический процесс, вызывающий перестройку функций и структуру органов и систем женщин.

    Воздействие индустриальных загрязнителей на организм человека Елена Манвелян НПО Армянские женщины за здоровье и здоровую окружающую среду 10 Декабря 2018 Ереван Проект «Вовлеченность Гражданского Общества

    Школа по рациональному питанию и коррекции массы тела. Центр здоровья БУ «ГКБ 1» Минздрава Чувашии Что такое здоровье? Здоровье это не отсутствие болезни как таковой или физического недостатка, а состояние

    Ценные запасы Нехватка гемоглобина в организме дает о себе знать вялостью, слабостью и головными болями. И если многие женщины привыкли годами игнорировать проявления анемии, будущей маме стоит обратить

    ПИЩА И ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА КАКИЕ ОРГАНЫ УЧАСТВУЮТ В ПИЩЕВАРЕНИИ? Мы поговорим о питательных веществах, содержащихся в наших продуктах питания. Углеводы, белки, жиры, минеральные вещества, витамины и вода

    Продукты разные нужны, блюда разные важны Образовательная программа «Правильное питание» 6 класс Грибенюк Г.В. Правильное питание Когда речь идет о правильном питании, часто говорят, что в одних продуктах

    Www.coral.prom.center Корал цинк 25 Всё, что мы должны знать о микроэлементе цинк Цинк один из основных микроэлементов, присутствующий почти во всех клетках организма. По последним статистическим данным,

    Возраст и здоровье «Хорошее здоровье прибавляет жизни к годам» Независимо от того, где мы живем, старение касается каждого из нас молодых и пожилых, мужчин и женщин, богатых и бедных Особенности здорового

    Витамины в жизни ребенка Воспитатель Маслова Наталья Анатольевна Витамины играют огромную роль во всех процессах жизнедеятельности организма. Они регулируют обмен веществ, участвуют в образовании ферментов

    ЛЕКАРСТВЕННЫЕ РАСТЕНИЯ Все травы лекари душица, И зверобой, и медуница, И земляника, и черника, И брусника с голубикой. Чистотел, полынь, калина, Лён, календула, крапива. Травы где найти такие, Знают жители

    Рациональное питание школьника Одной из составляющих здорового образа жизни является рациональное питание. Рациональное (здоровое) питание является необходимым условием обеспечения их здоровья, устойчивости

    Цинк АП Цинк один из наиболее «востребованных» элементов для организма человека. Являясь единственным металлом, представленным в каждом классе ферментов, цинк не может быть заменен никаким другим элементом.

    Основные принципы здорового питания школьников. Питание школьника должно быть сбалансированным Для здоровья детей важнейшее значение имеет правильное соотношение питательных веществ. В меню школьника обязательно

    Классный час «ЗДОРОВОЕ ПИТАНИЕ» Классный руководитель: Чернявская Л.М. 5 класс МБОУ ООШ 27 ПРАВИЛЬНОЕ ПИТАНИЕ ЗАЛОГ НАШЕГО ЗДОРОВЬЯ Здоровая пища должна содержать все необходимые для организма человека

    Сколько кальция в день нужно будущей маме? Кальций составляет основу костной ткани, входит в состав ферментов, участвует в передаче нервных импульсов и сокращении мышц, а также влияет на свертываемость

    Федеральное бюджетное учреждение здравоохранения «Центр гигиены и эпидемиологии в городе Москве» Оценка риска воздействия на население города Москвы химических контаминантов в пищевых продуктах А.В. Иваненко,

    Особенности, как организовать рациональное питание дома, роль витаминов в детском питании. Зимний период имеет свои особенности в организации правильного питания ребенка. Низкая температура воздуха оказывает

    Витамин В (пиродоксин) Физиологическое значение. Витамин В участвует в белковом обмене и способствует усвоению тканями аминокислот, улучшает использование организмом ненасыщенных жирных кислот. Он благотворно

    Витамины и минералы, которых вам не хватает. Часть 2 Нет дефициту полезных веществ! Получать достаточное для организма количество витаминов и минералов очень важно. Но удается это далеко не каждому. Как

    Региональная общественная организация медицинских сестер города Москвы Питание детей с эндокринными заболеваниями ГБУЗ ДГКБ им. З.А. Башляевой ДЗМ медицинская сестра отделения эндокринологии Гольдман Г.В.

    Витаминывжизничеловека Витамин С - аскорбиновая кислота, Польза организму от нее велика. Она иммунитет повышает, Болезни прочь прогоняет. Витамин С есть в фруктах, Он есть и во многих овощах. Шиповник,

    Витамины в питании детей Витамины ценнейшие вещества, необходимые организму человека. Все виды обмена веществ, работа нервной пищеварительной, сердечнососудистой систем осуществляются должным образом только

    Управление здравоохранения администрации г. Оренбурга «Центр медицинской профилактики» ПРАВИЛЬНОЕ ПИТАНИЕ ЗАЛОГ ЗДОРОВЬЯ памятка для родителей детей школьного возраста г. Оренбург Пирамида питания Жиры

    Азбука жизни Группа «Алфавит» Выполнили: учащиеся 9 класса Семьянова Ирина Семьянова Анна Короткова Ксения Гипотеза Мы предполагаем, что витамины бывают различными по химическому составу, свойствам, значению

    Организация питания Основные принципы организации рационального питания сохраняют свою актуальность для людей всех возрастов. Назовем их: 1. Адекватная энергетическая ценность рациона, соответствующая

    ВОПРОСЫ К ЗАЧЁТУ 1. Процессы поступления, распределения яда и выведения его из организма изучает 2. Токсическая опасность химического вещества характеризуется: 3. К тяжелым металлам относятся 4. Процесс

    Атомно-абсорбционная спектроскопия: объекты анализа, выполняемые стандарты Анализ пищевых, сельскохозяйственных продуктов и спиртосодержащей продукции: ГОСТ 31707-2012 ГОСТ 31466-2012 ГОСТ Р ИСО 17240-2010

    ÓÄÊ 615.874 ÁÁÊ 53.51 Ã 95 Ã 95 Ãóðâè Ì. Ì. Ñàõàðíûé äèàáåò? Ïèòàíèå âàøå ëåêàðñòâî / Ì. Ãóðâè. Ì. : Ýêñìî, 2013. 144 ñ. (Îçäîðîâëåíèå ïî ñèñòåìå Ãóðâè à). ISBN 978-5-699-63222-0 Ïðàâèëüíîå ïèòàíèå ýòî

    ТРАНСАКТИВАТОР КАЛЬЦИЯ Создан для нормализации обмена кальция Кальций относится к важнейшим элементам, отвечающим за огромное количество процессов в нашем организме. Однако, неправильный метаболизм кальция

    ISSN 2079-8490 Электронное научное издание «Ученые заметки ТОГУ» 2013, Том 4, 2, С. 50 56 Свидетельство Эл ФС 77-39676 от 05.05.2010 http://ejournal.khstu.ru/ [email protected] УДК 546.3:644 2013 г. Е.

    Чем проще пища, тем она приятнее - не приедается, тем здоровее и тем всегда и везде доступнее. Л.Н. ТОЛСТОЙ Здоровое питание - здоровый ребенок. А здоровый ребенок в семье это самое важное для родителей.

    2000 LV 2000 LV Ваш депозит 1 на 2000 LV Ваш депозит 2 на 5000 LV Ваш депозит 3 на 10 000 LV Ваш Бонусный депозит на 25 000 LV - 500 LV - 400 LV - 300 LV - 200 LV - 100 LV - 50 LV - 50 LV - 50 LV - 50

    Основные принципы здорового питания школьников Питание школьника должно быть сбалансированным. Для здоровья детей важнейшее значение имеет правильное соотношение питательных веществ. В меню школьника обязательно

    20 правил здорового питания для диабетиков (по рекомендациям Harvard Medical School) 1 Разнообразие Питайтесь разнообразно: для сбалансированного питания необходимы разные продукты 2 Больше растительного

    МАОУ «Белоярская средняя общеобразовательная школа 2» Здоровое питание школьников (для родителей) Сохранение и укрепление здоровья обучающихся является целью современной реформы образования в России, одним

    ГБУ РО «МЕДИЦИНСКИЙ ИНФОРМАЦИОННО-АНАЛИТИЧЕСКИЙ ЦЕНТР» ПОДРОСТКАМ о ЗДОРОВОМ (материал для СМИ) ПИТАНИИ Правильное питание в подростковом возрасте (от 10 до 18 лет) играет немаловажную роль в формировании

    Натуральный комплекс минералов Что такое минералы? Минералы это химические элементы, которые встречаются в земной коре. Минералы питательные вещества, которые способствуют функционированию всех органов

    Сбалансированным питанием для ребенка можно назвать только то, которое включает в себя продукты, содержащие необходимое для организма питательные вещества, микроэлементы и лучшие витамины для детей. Правильно

    С 1 декабря 2013 года! «Распустились» почки? Болезни почек встречаются всё чаще. В России от них страдают уже около 4 % населения, в основном женщины. Лечебное питание является важной составляющей терапии

    Практически всегда, когда речь идет о специфике питания спортсменов, «женский интерес» либо вообще не учитывается, либо ограничивается учетом антропометрических данных. Между тем, женский организм таит

    ТЕМА «Пищеварительная система» 1. В каком отделе пищеварительного канала человека всасывается основная масса воды 1) желудке 2) пищеводе 4) толстой кишке 2. В каком отделе кишечника человека происходит

    Принципы здорового питания школьников ПРИНЦИПЫ ЗДОРОВОГО ПИТАНИЯ ШКОЛЬНИКОВ Питание школьника должно быть сбалансированным. Для здоровья детей важнейшее значение имеет правильное соотношение питательных

    10 продуктов, в которых больше всего йода Дефицит йода может привести к депрессии, плохой работе мозга и набору веса. Чтобы избежать всех этих ужасов, мы выяснили, в каких продуктах встречается повышенное

    От чего зависит здоровье человека (взрослого, подростка, ребенка, новорожденного?) Белки вещества, которые служат основным «строительным материалом» для тела человека. Особенно нужен такой материал детям

    Потребность в кальции возрастает с возрастом. Обезжиренное коровье молоко богато кальцием, необходимым для костей и профилактики остеопороза, а так же при правильном питании. Молочное предотвращает снижение

    РАСШИРЕНИЕ АССОРТИМЕНТНОЙ ЛИНИИ ТВОРОЖНЫХ ИЗДЕЛИЙ 132 Г.К. Альхамова Ассортимент молочной и кисломолочной продукции довольно разнообразен. Однако, по результатам проведённого обзора рынка творожных продуктов

    «Решение задач на проценты» МБОУ СОШ 72 им. Ю.В.Лукьянчикова Учитель Доронина Е.Д. Вычислите и расшифруете слова: К Найдите 1% от 340 руб. Т Увеличьте число 15 на 300 % А Уменьшите число 50 на 20% Н Найдите

    Выходные данные сборника:

    Высокое качество и безопасность продуктов питания является в настоящее время одной из существенных предпосылок сохранения продовольственной независимости Казахстана и важнейшей задачей государственной политики в области здорового питания.

    Уровень контаминантов в пищевом сырье за последние пять лет увеличился почти в пять раз. Токсичные элементы обнаруживаются в 90 % исследуемых продуктов питания. В данных условиях возникла необходимость расширения и углубления представлений о возможных путях загрязнения продовольственного сырья, технологических приемах переработки, позволяющих снизить вредное воздействие .

    Качество молочных продуктов во многом зависит от экологических условий получения молока. Активная антропогенная деятельность способствует загрязнению природной среды вредными ингредиентами, достигшими критических уровней в большинстве промышленных центров . Распространенность тяжелых металлов в окружающей среде в связи с их неблагоприятным влиянием на организм является актуальной проблемой, прежде всего для регионов повышенного техногенного загрязнения, к которым принадлежит и наша область .

    Негативное влияние экологического фактора приводит к нарушениям обмена веществ у животных, что, как правило, сопровождается снижением продуктивности, ухудшением качества молока, эндемическими болезнями. Исследованиями последних лет установлена прямая связь между поступлением тяжелых металлов с кормами и водой и их содержанием в получаемом молоке. В результате в молочном сырье накапливаются крайне нежелательные микроэлементы. К наиболее опасным из них относятся ртуть, свинец, кадмий, кобальт, никель, цинк, олово, сурьма, медь, молибден, ванадий, мышьяк. Попадают металлы в биосферу при высокотемпературных технологических процессах (металлургии, сжигании топлива, обжиге цемента и др.) в виде газов, и аэрозолей (возгонка металлов), пылевидных частиц и жидком виде (технологические сточные воды). Они способны мигрировать в окружающей среде и попадать в растения. В глобальных масштабах происходит процесс, называемый сегодня «металлическим прессом на биосферу» .

    В связи с вышесказанным, определение тяжелых металлов в молоке и кисломолочных продуктахпредставляется актуальным.

    Целью данной работы явилась определение тяжелых металловв молоке и кисломолочных продуктах отечественного и зарубежного производителей.

    Анализ образцов на содержание цинка, свинца и кадмия выполнен в аккредитованной лаборатории биогеохимии и экологии Западно-Казахстанского государственного университета им. М. Утемисова. Содержание тяжелых металлов было определено на приборе - анализатор жидкости вольтамперометрический «Экотест-ВА». Подготовка образцов проводилась методом минерализации «до влажных солей» .

    Результаты анализа тяжелых металлов в содержании молока оте­чественного и зарубежного производителей представлены в таблице 1.

    Таблица 1

    Концентрация тяжелых металлов в содержании молока отечественного и зарубежного производителей, мг/дм 3

    Исследуемые образцы

    цинк

    Кадмий

    свинец

    Образец № 1

    Образец № 2

    Образец № 3

    Как видно из таблицы 1, содержание цинка в образцах варьирует в пределах 0,0204-0,0874 мг/дм 3 и составляет в среднем 1 % от предельно-допустимой концентрации. Содержание кадмия в образцах колеблется от 0,0011 до 0,0018 мг/дм 3 , что составляет в среднем 7,5 % от ПДК, среднее значение свинца составляет 0,0181 мг/ дм 3 или 0,36 ПДК.

    Далее нами были определены концентрации ионов цинка, кадмия и свинца в содержании йогурта. Результаты анализа тяжелых металлов в содержании йогуртаотечественного и зарубежного производителей представлены в таблице 2.

    Как видно из таблицы 2, содержание цинка в образцах варьирует от 0,0004 до 0,010 мг/кг, содержание кадмия составляет от 6 до 11 %от предельно-допустимой концентрации, среднее значение свинца составляет 0,020 мг/кг.

    Таблица 2

    Концентрация тяжелых металлов в содержании йогурта, мг/кг

    Исследуемые образцы

    цинк

    Кадмий

    свинец

    Образец № 1

    Образец № 2

    Образец № 3

    Результаты анализа тяжелых металлов в содержании кефираотечественного и зарубежного производителей представлены в таблице 3.

    Исходя из таблицы 3 видно, что содержание цинка в образцах варьирует от 0,0600 до 0,1766 мг/кг. Содержание кадмия колеблется в пределах 0,0008-0,0011 мг/кг, что не превышает предельно-допустимую концентрацию. Содержание свинца составляет в среднем 0,0151 мг/кг.

    Таблица 3

    Концентрация тяжелых металлов в содержании кефира, мг/кг

    Исследуемые образцы

    цинк

    Кадмий

    свинец

    Образец № 1

    Образец № 2

    Образец № 3

    Результаты анализа тяжелых металлов в содержании творогаотечественного и зарубежного производителей представлены в таблице 4.Исходя из таблицы 4 видно, что наибольшее содержание цинка наблюдается у образца № 1, по содержанию кадмия - у образца № 3, по содержанию кадмия - у образца № 2. во всех исследуемых образцах содержание тяжелых металлов не превышает предельно-допустимую концентрацию токсичных веществ.

    Таблица 4

    Концентрация тяжелых металлов в содержании творога, мг/кг

    Исследуемые образцы

    цинк

    Кадмий

    свинец

    Образец № 1

    Образец № 2

    Образец № 3

    Таким образом, проведенный анализ некоторых токсичных веществ в молочных продуктах, показал, что средний уровень концентрации тяжелых металлов не превышает предельно-допустимых значений токсичных веществ в молочных продуктах.

    Список литературы:

    1. Бударков В.А., Макаров В.В. Методологические аспекты исследования комбинированного действия факторов радиационной, химической и биологической природы // Вестник сельскохозяйственной науки. 1992. - №4. - С. 122-130.
    2. Бугреева H.H. Содержание соединений свинца и кадмия в молоке и молочных продуктах и пути их снижения при производстве молокопродуктов: Автреф. дис. .к-та вет. наук. Москва, 1995. - 24 с.
    3. Васильев A.B., Ратников А.Н., Алексахин P.M. Закономерности перехода радионуклидов и тяжелых металлов в системе почва растение - животное -продукт животноводства // Химия в сельском хозяйстве. - 1995. - № 4. - С. 16-18.
    4. Ревелль П., Ревелль Ч. Среда нашего обитания, книга четвертая. - М. - «Мир». - 1995. - 192 с.
    5. ГОСТ Р 51301-99 Продукты пищевые и продовольственное сырье. Инверсионно-вольтамперометрические методы определения содержания токсичных элементов (кадмия, свинца, меди и цинка).
  • Просмотров