Степень числа: определения, обозначение, примеры. Степень с действительным показателем Сравнение степеней с действительным показателем

Тема урока: Степень с действительным показателем.

Задачи:

  • Образовательные :
    • обобщить понятие степени;
    • отработать умение находить значение степени с действительным показателем;
    • закрепить умения использовать свойства степени при упрощении выражений;
    • выработать навык использования свойств степени при вычислениях.
  • Развивающие :
    • интеллектуальное, эмоциональное, личностное развитие ученика;
    • развивать умение обобщать, систематизировать на основе сравнения, делать вывод;
    • активизировать самостоятельную деятельность;
    • развивать познавательный интерес.
  • Воспитательные :
    • воспитание коммуникативной и информационной культуры обучающихся;
    • эстетическое воспитание осуществляется через формирование умения рационально, аккуратно оформлять задание на доске и в тетради.

Учащиеся должны знать: определение и свойства степени с действительным показателем.

Учащиеся должны уметь:

  • определять имеет ли смысл выражение со степенью;
  • использовать свойства степени при вычислениях и упрощении выражений;
  • решать примеры, содержащие степень;
  • сравнивать, находить сходства и отличия.

Форма урока: семинар – практикум, с элементами исследования. Компьютерная поддержка.

Форма организации обучения: индивидуальная, групповая.

Тип урока: урок исследовательской и практической работы.

ХОД УРОКА

Организационный момент

«Однажды царь решил выбрать из своих придворных первого помощника. Он подвёл всех к огромному замку. «Кто первым откроет, тот и будет первым помощником». Никто даже не притронулся к замку. Лишь один визирь подошёл и толкнул замок, который открылся. Он не был закрыт на ключ.
Тогда царь сказал: «Ты получишь эту должность, потому что полагаешься не только на то, что видишь и слышишь, а надеешься на собственные силы и не боишься сделать попытку».
И мы сегодня будем пытаться, пробовать, чтобы прийти к правильному решению.

1. С каким математическим понятием связаны слова:

Основание
Показатель (Степень)
Какими словами можно объединить слова:
Рациональное число
Целое число
Натуральное число
Иррациональное число (Действительное число)
Сформулируйте тему урока. (Степень с действительным показателем)

2. Какая наша стратегическая цель? (ЕГЭ)
Какие цели нашего урока ?
– Обобщить понятие степени.

Задачи:

– повторить свойства степени
– рассмотреть применение свойств степени при вычислениях и упрощениях выражений
– отработка вычислительных навыков.

3. Итак, а р, где р – число действительное.
Приведите примеры (выберете из выражений 5 –2 , 43, ) степени

– с натуральным показателем
– с целым показателем
– с рациональным показателем
– с иррациональным показателем

4. При каких значениях а имеет смысл выражение

аn, где n (а – любое)
аm, где m (а 0) Как от степени с отрицательным показателем перейти к степени с положительным показателем?
, где (а0)

5. Из данных выражений выберете те, которые смысла не имеют:
(–3) 2 , , , 0 –3 , , (–3) –1 , .
6. Вычислите. Ответы в каждом столбике обладают одним общим свойством. Укажите лишний ответ (этим свойством не обладающий)

2 = =
= 6 = (неправ. др.) = (нельзя записать дес. др.)
= (дробь) = =

7. Какие действия (математические операции) можно выполнять со степенями?

Установите соответствие:

Один ученик записывает формулы (свойства) в общем виде.

8. Дополнить степени из п.3 так, чтобы к полученному примеру можно было применить свойства степени.

(Один человек работает у доски, остальные в тетрадях. Для проверки обменяться тетрадями, а ещё один выполняет действия на доске)

9. На доске (работает ученик):

Вычислите : =

Самостоятельно (с проверкой на листах)

Какой из ответов не может получиться в части «В» на ЕГЭ? Если в ответе получилось , то как записать такой ответ в части «В»?

10. Самостоятельное выполнение задания (с проверкой у доски – несколько человек)

Задание с выбором ответа

1
2 :
3 0,3
4

11. Задание с кратким ответом (решение у доски):

+ + (60)5 2 – 3–4 27 =

Самостоятельно с проверкой на скрытой доске:

– – 322– 4 + (30)4 4 =

12 . Сократите дробь (на доске):

В это время один человек решает на доске самостоятельно: = (класс проверяет)

13. Самостоятельное решение (на проверку)

На отметку «3»: Тест с выбором ответа:

1. Укажите выражение, равное степени

1. 2. 3. 4.

2. Представьте в виде степени произведение: – Спасибо за урок!


После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n (2,2) 7 и .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Тема урока: Степень с рациональным и действительным показателями.

Цели:

    Образовательные :

    • обобщить понятие степени;

      отработать умение находить значение степени с действительным показателем;

      закрепить умения использовать свойства степени при упрощении выражений;

      выработать навык использования свойств степени при вычислениях.

    Развивающие :

    • интеллектуальное, эмоциональное, личностное развитие ученика;

      развивать умение обобщать, систематизировать на основе сравнения, делать вывод;

      активизировать самостоятельную деятельность;

      развивать познавательный интерес.

    Воспитательные :

    • воспитание коммуникативной и информационной культуры обучающихся;

      эстетическое воспитание осуществляется через формирование умения рационально, аккуратно оформлять задание на доске и в тетради.

Учащиеся должны знать: определение и свойства степени с действительным показателем

Учащиеся должны уметь:

    определять имеет ли смысл выражение со степенью;

    использовать свойства степени при вычислениях и упрощении выражений;

    решать примеры, содержащие степень;

    сравнивать, находить сходства и отличия.

Форма урока: семинар – практикум, с элементами исследования. Компьютерная поддержка.

Форма организации обучения: индивидуальная, групповая.

Педагогические технологии : проблемное обучение, обучение в сотрудничестве, личностно - ориентированное обучение, коммуникативное.

Тип урока: урок исследовательской и практической работы.

Наглядность к уроку и раздаточный материал:

    презентация

    формулы и таблицы (приложение 1,2)

    задание для самостоятельной работы (приложение 3)

План урока

Этап урока

Цель этапа

Время,мин.

Начало урока

Сообщение темы урока, постановка целей урока.

1-2 мин

Устная работа

Повторить формулы степеней.

Свойства степеней.

4-5 мин.

Фронтальное решение у

доски из учебника №57(1,3,5)

58(1,3,5) с подробным следованием плану решения.

Формирование умений и навыков

у учащихся применять свойства

степеней при нахождениях значений выражения.

8-10 мин.

Работа в микрогруппах.

Выявление пробелов в знаниях

учащихся, создание условий для

индивидуального развития ученика

на уроке.

15-20 мин.

Подведение итогов работы.

Отследить успешность работы

Учащихся при самостоятельном решении задач по теме, выяснить

характер затруднений, их причины,

указать коллективно пути решения.

5-6 мин.

Домашнее задание

Познакомить учащихся с заданием на дом. Дать необходимые пояснения.

1-2 мин.

ХОД УРОКА

Организационный момент

Здравствуйте ребята! Запишите в тетрадях число, тема урока.

Рассказывают, что изобретатель шахмат в награду за свое изобретение попросил у раджи немного риса: на первую клетку доски он попросил положить одно зерно, на вторую – в 2 раза больше, т. е. 2 зерна, на третью- ещё в 2 раза больше, т. е. 4 зерна, и т. д. до 64 клетки.

Его просьба показалась радже слишком скромной, однако вскоре выяснилось, что выполнить её невозможно. Число зёрн, которые нужно было передать изобретателю шахмат в награду, выражается суммой

1+2+2 2 +2 3 +…+2 63 .

Эта сумма равна огромному числу

18446744073709551615

И она столь велика, что этим количеством зерна можно было бы покрыть слоем в 1 см всю поверхность нашей планеты, включая мировой океан.

Степени используют при записи чисел и выражений, что делает их более компактными и удобными для выполнения действий.

Часто степени употребляются при измерении физических величин, которые могут быть «очень большими» и «очень маленькими».

Масса Земли 6000000000000000000000т записывают в виде произведения 6.10 21 т

Диаметр молекулы воды 0,0000000003м записывают в виде произведения

3.10 -10 м.

1. С каким математическим понятием связаны слова:

Основание
Показатель (Степень)


Какими словами можно объединить слова:
Рациональное число
Целое число
Натуральное число
Иррациональное число (Действительное число)
Сформулируйте тему урока.
(Степень с действительным показателем)

2. Итак а x ,где х- действительное число. Выберите из выражений

С натуральным показателем

С целым показателем

С рациональным показателем

С иррациональным показателем

3. Какая наша цель? (ЕГЭ)
Какие
цели нашего урока ?
– Обобщить понятие степени.

Задачи:

повторить свойства степени
– рассмотреть применение свойств степени при вычислениях и упрощениях выражений
– отработка вычислительных навыков

4 . Степень с рациональным показателем

Основание

степени

Степень с показателем r , основанием а ( n N , m n

r = n

r = - n

r = 0

r = 0

r =0

a n = a . a . … . a

a -n =

a 0 =1

a n =a.a. … .a

a -n =

Не существует

Не существует

a 0 =1

а=0

0 n =0

Не существует

Не существует

Не существует

5 . Из данных выражений выберете те, которые смысла не имеют:

6 . Определение

Если число r - натуральное, то а r есть произведение r чисел, каждое из которых равно а:

a r = a . a . … . a

Если число r - дробное и положительное, то есть, где m и n - натуральные

числа, то

Если показатель r является рациональным и отрицательным, то выражение a r

определяется как величина, обратная к a - r

или

Если

7 . Например

8 . Степени положительных чисел обладают следующими основными свойствами:

9 . Вычислить

10. Какие действия (математические операции) можно выполнять со степенями?

Установите соответствие:

А)При умножении степеней с равными основаниями

1)Основания умножаются, а показатель остаётся прежним

Б)При делении степеней с равными основаниями

2)Основания делятся, а показатель остаётся прежним

В)При возведении степени в степень

3)Основание остаётся прежним, а показатели умножаются

Г)При умножении степеней с равными показателями

4)Основание остаётся прежним, а показатели вычитаются

Д)При делении степеней с равными показателями

5)Основание остаётся прежним, а показатели складываются

11 . Из учебника (у доски)

Для решения в классе:

57 (1,3,5)

58 (1, 3, 5)

59 (1, 3)

60 (1,3)

12 . По материалам ЕГЭ

(самостоятельная работа) на листочках

XIV века.

Ответ: Орезма. 13. Дополнительно (индивидуально) тем, кто быстрее справится с заданиями:

14. Домашнее задание

§ 5 (знать определения, формулы)

57 (2, 4, 6)

58 (2,4)

59 (2,4)

60 (2,4) .

В заключение урока:

«Математику уже затем учить надо, что она ум в порядок приводит»

Так сказал великий русский математик Михаил Ломоносов.


– Спасибо за урок!

Приложение 1

1.Степени. Основные свойства

Показателем

a 1 =a

a n =a.a. … .a

a R n

3 5 =3 . 3 . 3 . 3 . 3 . 3=243,

(-2) 3 =(-2) . (-2) . (-2)= - 8

Степень с целым показателем

a 0 =1,

где a

0 0 -не определено.

Степень с рациональным

Показателем

где a

m n

Степень с иррациональным показателем

Ответ: ==25,9...

1. a x . a y =a x+y

2.a x : a y = = a x-y

3. .(a x ) y =a x.y

4.(a.b) n =a n .b n

5. (=

6. (

Приложение 2

2. Степень с рациональным показателем

Основание

степени

Степень с показателем r , основанием а ( n N , m n

r = n

r = - n

r = 0

r = 0

r =0

a n = a . a . … . a

a -n =

a 0 =1

a n =a.a. … .a

a -n =

Не существует

Не существует

a 0 =1

а=0

0 n =0

Не существует

Не существует

Не существует

Приложение 3

3. Самостоятельная работа

Впервые действия над степенями использовал французский математик XIV века.

Расшифруйте фамилию французского ученого.

Самостоятельная работа студента 1 курс по теме Степени с действительным показателем. Свойства степени с действительным показателем (6 часов)

    Изучить теоретический материал и сделать конспект (2 часа)

    Разгадать кроссворд (2 часа)

    Выполнить домашнюю контрольную работу (2 часа)

Справочный и дидактический материал представлен ниже

О понятии степени с рациональным показателем

Некоторые наиболее часто встречающиеся

Виды трансцендентных функций, прежде

Всего показательные, открывают доступ ко

Многим исследованиям.

Л. Э й л е р

Из практики решения-все более сложных алгебраических задач и оперирования со степенями возникла необходимость обобщения понятия степени и расширения его посредством введения в качестве показателя нуля, отрицательных и дробных чисел.

Равенство а 0 = 1 (для ) применял в своих трудах в начале XV в. самаркандский ученый ал-Каши. Независимо от него нулевой показатель был введен Н. Шюке в XV в. Последний ввел и отрицательные показатели степени. Идея дробных показателей содержится у французского математика Н. Орема (XIV в.) в его

труде «Алгоризм пропорций». Вместо нашего знака он писал , вместо он писал 4. Орем словесно формулирует правила действий со степенями, например (в современной записи): , и т.п.

Позже дробные, как и отрицательные, показатели встречаются в «Полной арифметике» (1544) немецкого математика М. Штифеля и у С. Стевина. Последний пишет о том, что корень степени п из числа а можно считать как степень а с дробным показателем .

О целесообразности введения нулевого, отрицательных и дробных показателей и современных символов впервые подробно писал в 1665 г, английский математик Джон Валлис. Его дело завершил И. Ньютон, который стал систематически применять новые символы, после чего они вошли в общий обиход.

Введение степени с рациональным показателем является одним из многих примеров обобщения понятия математического действия. Степень с нулевым, отрицательным и дробным показателями определяется таким образом, чтобы к ней были применимы те же правила действий, которые имеют место для степени с натуральным показателем, т. е. чтобы сохранились основные свойства первоначально определенного понятия степени, а именно:

Новое определение степени с рациональным показателем не противоречит старому определению степени с натуральным показателем, т. е. смысл нового определения степени с рациональным показателем сохраняется и для частного случая степени с натуральным показателем. Этот принцип, соблюдаемый при обобщении математических понятий, называется принципом перманентности (сохранения, постоянства). В несовершенной форме его высказал в 1830 г. английский математик Дж. Пикок, полностью и четко его установил немецкий математик Г. Ганкель в 1867 г. Принцип перманентности соблюдается и при обобщении понятии числа и расширении его до понятия действительного числа, а до этого - при введении понятия умножения на дробь и т. п.

Степенная функция и графическое решение уравнений и неравенств

Благодаря открытию метода координат и аналитической геометрии начинай с XVII в. стало возможным общеприменимое графическое исследование функций и графическое решение уравнений.

Степенной функцией называют функцию вида

где α- постоянное вещественное число. Вначале мы ограничимся, однако, лишь рациональными значениями α и вместо равенства (1) запишем:

где - рациональное число. Для и по определению соответственно имеем:

у =1, у =х.

Графиком первой из этих функций на плоскости является прямая, параллельная оси Ох, а второй - биссектриса 1-го и 3-го координатных углов.

При графиком функций является парабола . Декарт, который первое неизвестное обозначал через z , второе - через у, третье - через x :, записывал уравнение параболы так: (z - абсцисса). Параболой он часто пользовался для решения уравнений. Чтобы решить, например, уравнение 4-й степени

Декарт с помощью подстановки

получил квадратное уравнение с двумя неизвестными:

изображающее окружность, расположенную в одной плоскости (z х) с параболой (4). Таким образом, Декарт, вводя вторую неизвестную (х), разбивает уравнение (3) на два уравнения (4) и (5), каждое из которых представляет определенное геометрическое место точек. Ординаты точек их пересечения и дают корни уравнения (3).

«Однажды царь решил выбрать из своих придворных первого помощника. Он подвёл всех к огромному замку. «Кто первым откроет, тот и будет первым помощником». Никто даже не притронулся к замку. Лишь один визирь подошёл и толкнул замок, который открылся. Он не был закрыт на ключ.

Тогда царь сказал: «Ты получишь эту должность, потому что полагаешься не только на то, что видишь и слышишь, а надеешься на собственные силы и не боишься сделать попытку».

И мы сегодня будем пытаться, пробовать, чтобы прийти к правильному решению.

1. С каким математическим понятием связаны слова:

Основание

Показатель (Степень)

Какими словами можно объединить слова:

Рациональное число

Целое число

Натуральное число

Иррациональное число (Действительное число)

Сформулируйте тему урока. (Степень с действительным показателем)

– повторить свойства степени

– рассмотреть применение свойств степени при вычислениях и упрощениях выражений

– отработка вычислительных навыков.

Итак, а р, где р – число действительное.

Приведите примеры (выберете из выражений 5 –2 , , 43, ) степени

– с натуральным показателем

– с целым показателем

– с рациональным показателем

– с иррациональным показателем

При каких значениях а имеет смысл выражение

а n , где n (а – любое)

а m , где m (а не равно 0) Как от степени с отрицательным показателем перейти к степени с положительным показателем?

Где p , q (а > 0)

Какие действия (математические операции) можно выполнять со степенями?

Установите соответствие:

При умножении степеней с равными основаниями

Основания умножаются, а показатель остаётся прежним

При делении степеней с равными основаниями

Основания делятся, а показатель остаётся прежним

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где «a » — любое число, а «m », «n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

= 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    T = 3 8 − 4

    Ответ: t = 3 4 = 81
  • Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    • Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5
    • Пример. Найти значение выражения, используя свойства степени.
      = = = 2 9 + 2
      2 5
      = 2 11
      2 5
      = 2 11 − 5 = 2 6 = 64

      Важно!

      Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

      Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

      Будьте внимательны!

      Свойство № 3
      Возведение степени в степень

      Запомните!

      При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

      (a n) m = a n · m , где «a » — любое число, а «m », «n » — любые натуральные числа.


      Свойства 4
      Степень произведения

      Запомните!

      При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

      (a · b) n = a n · b n , где «a », «b » — любые рациональные числа; «n » — любое натуральное число.

      • Пример 1.
        (6 · a 2 · b 3 · c) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
      • Пример 2.
        (−x 2 · y) 6 = ((−1) 6 · x 2 · 6 · y 1 · 6) = x 12 · y 6

      Важно!

      Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

      (a n · b n)= (a · b) n

      То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

      • Пример. Вычислить.
        2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
      • Пример. Вычислить.
        0,5 16 · 2 16 = (0,5 · 2) 16 = 1

      В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

      Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

      Пример возведения в степень десятичной дроби.

      4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

      Свойства 5
      Степень частного (дроби)

      Запомните!

      Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

      (a: b) n = a n: b n , где «a », «b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

      • Пример. Представить выражение в виде частного степеней.
        (5: 3) 12 = 5 12: 3 12

      Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    Просмотров