Мутации митохондриальной днк. Митохондриальная днк матери На основе анализа митохондриальной днк

Основная статья: Митохондриальная ДНК

Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 10 5 раз меньше ДНК, локализованной в ядре. В целом митохондриальная ДНК кодирует 2 рРНК, 22 тРНК и 13 субъединиц ферментов дыхательной цепи, что составляет не более половины обнаруживаемых в ней белков. В частности, под контролем митохондриального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с -редуктазы. При этом все белки, кроме одного, две рибосомные и шесть транспортных РНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Детальное изучение нуклеотидной последовательности митохондриального генома позволило установить то, что в митохондриях животных и грибов нередки отклонения от универсального генетического кода. Так, в митохондриях человека кодон ТАТ вместо изолейцина в стандартном коде кодирует аминокислоту метионин, кодоны ТСТ и ТСС, обычно кодирующие аргинин, являются стоп-кодонами, а кодон АСТ, в стандартном коде являющийся стоп-кодоном, кодирует аминокислоту метионин. Что касается митохондрий растений, то, по-видимому, они используют универсальный генетический код. Другой чертой митохондрий является особенность узнавания кодонов тРНК, заключающаяся в том, что одна подобная молекула способна узнавать не один, но сразу три или четырекодона. Указанная особенность снижает значимость третьего нуклеотида в кодоне и приводит к тому, что митохондрии требуется меньшее разнообразие типов тРНК. При этом достаточным количеством оказываются всего 22 различных тРНК.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы, характеризуемые коэффициентом седиментации 55S, что даже ниже аналогичного показателя у 70S-рибосом прокариотического типа. При этом две большие рибосомные РНК также имеют меньшие размеры, чем у прокариот, а малая рРНК вообще отсутствует. В митохондриях растений, напротив, рибосомы более сходны с прокариотическими по размерам и строению.


Митохондриальные белки[править | править исходный текст]

Количество транслируемых с митохондриальной мРНК белков, формирующих субъединицы крупных ферментных комплексов, ограничено. Значительная часть белков кодируется в ядре и синтезируется на цитоплазматических 80S-рибосомах. В частности, так образуются некоторые белки - переносчики электронов, митохондриальные транслоказы, компоненты транспорта белков в митохондрии, а также факторы, необходимые для транскрипции, трансляции и репликации митохондриальной ДНК. При этом подобные белки на своём N-конце имеют особые сигнальные пептиды, размер которых варьирует от 12 до 80 аминокислотных остатков. Данные участки формируют амфифильные завитки, обеспечивают специфический контакт белков со связывающими доменами митохондриальных распознающих рецепторов, локализованных на наружной мембране. До наружной мембраны митохондрии данные белки транспортируются в частично развёрнутом состоянии в ассоциации с белками-шаперонами (в частности - с hsp70). После переноса через наружную и внутреннюю мембраны в местах их контактов поступающие в митохондрию белки вновь связываются с шаперонами, но уже собственного митохондриального происхождения, которые подхватывают пересекающий мембраны белок, способствуют его втягиванию в митохондрию, а также контролируют процесс правильного сворачивания полипептидной цепи. Большинство шаперонов обладает АТФазной активностью, в результате чего как транспорт белков в митохондрию, так и образование их функционально активных форм являются энергозависимыми процессами.

Магнитные поля - это физические и внешние силы, вызывающие множественные реакции в клеточной биологии, которые включают изменения в обмене информации в РНК и ДНК, а также многие генетические факторы. Когда происходят изменения в планетарном магнитном поле, изменяется уровень электромагнетизма (ЭДС), непосредственно изменяющий клеточные процессы, генетическое выражение и плазму крови. Функции белков в теле человека, так же, как и в плазме крови, связаны со свойствами и влиянием ЭДС поля. Белки выполняют разнообразные функции в живых организмах, в том числе выступая в роли катализаторов метаболических реакций, производя репликацию ДНК, вызывая реакцию на возбудители и перемещая молекулы с одного места в другое. Плазма крови действует как хранилище белка в организме, защищая от инфекций и болезней, и играет жизненно важную роль в обеспечении белками, необходимыми для синтеза ДНК. Качество нашей крови и плазмы крови - это то, что дает команды всей совокупности белков, выражаясь посредством нашего генетического материала во всех клетках и тканях. Это означает, что кровь непосредственно взаимодействует с телом посредством белков, что было закодировано в нашей ДНК. Эта связь синтеза белка между ДНК, РНК и митохондриями клеток меняется в результате изменения магнитного поля.

Кроме того, наши эритроциты содержат гемоглобин, который является белком на основе четырех атомов железа, связанных с состоянием железного ядра и магнетизмом Земли. Гемоглобин в крови несет кислород от легких к остальным частям тела, где кислород освобождается для сжигания питательных веществ. Это обеспечивает энергией работу нашего тела, в процессе, называемом энергетическим метаболизмом. Это важно, поскольку изменения в нашей крови непосредственно связаны с энергией в процессе обмена веществ в нашем теле и сознании. Это станет еще более очевидно, когда мы станем обращать внимание на эти знаки, изменяющие потребление энергии и использование энергетических ресурсов на планете. Вернуть их законному владельцу, также означает изменение энергетического метаболизма в микрокосме нашего тела, отражая изменения макрокосма Земли. Это важная стадия окончания чахоточного моделирования Диспетчеров, чтобы достигнуть баланса принципов сохранения для того, чтобы найти внутреннее равновесие, и, следовательно, достичь энергетического баланса внутри этих систем. Важная часть этих изменений заключается в тайне высших функций митохондриона.

Митохондриальная ДНК Матери

Когда мы сравниваем гендерный принцип, присущий нашему созданию и то, что наш принцип Матери возвращает энергетическое равновесие в земное ядро посредством магнитного поля, следующим шагом становится восстановление митохондриальной ДНК. Митохондриальная ДНК - это ДНК, расположенная в митохондриях, структурах внутри клеток, преобразующих химическую энергию, поступающую с пищей, в форму, которую клетки могут использовать, - аденозин трифосфат (АТФ). АТФ измеряет световой коэффициент, проводимый клетками и тканями тела, и непосредственно связан с воплощением духовного сознания, которое является энергией и важно для энергетического метаболизма.

Митохондриальная ДНК - это только небольшая часть ДНК в клетке; большая часть ДНК содержится в ядре клетки. У большинства видов на Земле, включая людей, митохондриальная ДНК наследуется исключительно от матери. Митохондрии имеют свой собственный генетический материал и механизм создания своих собственных РНК и новых белков. Этот процесс называют биосинтезом белка. Биосинтез белка относится к процессам, посредством которых биологические клетки генерируют новые наборы белков.

Без правильно функционирующей митохондриальной ДНК человечество не может эффективно вырабатывать новые белки для синтеза ДНК, а также сохранять уровень ATФ, необходимый для генерации света в клетке, чтобы воплотить наше духовное сознание. Таким образом, вследствие повреждения митохондриальной ДНК, человечество крайне пристрастилось к потреблению всего во внешнем мире для заполнения энергетической пустоты внутри наших клеток. (См. Чужеродные установки Негативной Инопланетной Программы для зависимостей).

Не зная ничего другого в нашей недавней истории и стерев воспоминания, человечество не сознает, что мы существовали с значительно дисфункциональным митохондрионом.

Это прямой результат извлечения из Земли ДНК Матери, магнитных принципов, протонной структуры и наличие синтетической чужеродной версии «Темной Матери», которая была помещена в планетарную архитектуру, чтобы подражать ее функциям. Человечество существовало на планете без своего истинного Материнского принципа, и очевидно это было записано в клетках нашей митохондриальной ДНК. Этот было описано много раз как вторжение Негативной Инопланетной Программы в Планетарные Логосы посредством управления магнитосферой и магнитным полем.

Криста

Внутренняя митохондриальная мембрана распределяется в многочисленных кристах, которые увеличивают площадь поверхности внутренней митохондриальной мембраны, увеличивая ее способность производить АТФ. Именно эта область митохондриона, когда функционирует правильно, увеличивает энергию АТФ и генерирует свет в клетках и тканях тела. Высшая функция крист в митохондрионе активизируется в группах Вознесения, начинаясь в этом цикле. Название «криста» было дано в результате научного открытия, поскольку она непосредственно связана с активацией кристаллического гена.

Изменение рецепторов эстрогена

Материнская митохондриальная ДНК и магнитные сдвиги имеют множество факторов, которые вносят коррективы и вызывают симптомы в репродуктивных циклах женщин. Гормоны эстрогена активизируют рецепторы эстрогена, которые являются белками, входящими в клетки и связаны с ДНК, внося изменения в генетическое выражение. Клетки могут общаться друг с другом, выпуская молекулы, которые передают сигналы другим восприимчивым клеткам. Эстроген выделяется тканями, такими как яичники и плацента, проходя через клеточные мембраны принимающих клеток, и связывается с рецепторами эстрогена в клетках. Рецепторы эстрогена управляют передачей сообщений между ДНК и РНК. Таким образом, в настоящее время многие женщины замечают необычные, странные менструальные циклы, вызванные доминированием эстрогена. Изменения уровня эстрогена происходят и у мужчин, и у женщин, поэтому прислушайтесь к своему телу, возможно, необходимо помочь поддержать эти изменения. Позаботьтесь о печени и детоксикации, исключите потребление сахара и пищу, стимулирующую и увеличивающую гормоны, следите за бактериальным балансом в кишечнике и теле - это полезно для поддержания баланса эстрогена.

Митохондриальная болезнь истощает энергию

Митохондриальные болезни возникают в результате генетических мутаций, отпечатанных в последовательности ДНК. Искусственная архитектура, помещенная на планету, например, инопланетные механизмы, стремящиеся создать генетические модификации для узурпирования Материнской ДНК, которые проявляются как мутации и повреждение ДНК всех видов. Митохондриальные болезни характерны блокировкой энергии в теле, вследствие того, что болезнь накапливается, наследуя материнскую генетику в наследственных родословных.

Митохондрион важен для ежедневного функционирования клеток и энергетического метаболизма, который также ведет к духовному развитию души и воплощению Сверхдуши (монады). Митохондриальная болезнь уменьшает эффективное генерирование энергии, доступной для тела и сознания, останавливает рост развития человека и духовный рост. Таким образом, тело быстрее стареет и повышается риск заболеваний; личная энергия деактивируется, и, таким образом, исчерпывается. Это значительно ограничивает количество пригодной энергии, доступной для развития мозга и работы всех неврологических системных. Истощение энергетических запасов для мозгового и неврологического развития способствует спектрам аутизма, нейродегенерации и других недостатков работы мозга. Дефекты в митохондриальных генах связаны с сотнями «клинических» заболеваний крови, мозга и неврологических расстройствах.

Функции крови, мозга и неврологические функции планетарного тела приравниваются к архитектуре лей-линий, чакровых центров и систем Звездных Врат, которые управляют энергетическим потоком (кровью), чтобы сформировать тело сознания, известное как Древовидная Сеть 12 Планетарного Храма. Функции крови, мозга и неврологические функции человеческого тела приравниваются к такой же Древовидной Сети 12 Храма Человека. Как только Храм и установки ДНК повреждены или видоизменены, повреждается кровь, мозг и нервная система. Если наша кровь, мозг и нервная система заблокированы или повреждены, мы не можем переводить язык, поддерживать связь с , строить многомерные световые тела для получения высшей мудрости (Софии). Наши виды языка на многих уровнях, включая наш язык ДНК, перепутаны и смешаны теми, кто стремился поработить и ожесточить Землю.

Как мы знаем, большая часть источников кинетической или других внешних энергий активно контролируется властвующей элитой для подавления развития человека и ограничения возможностей равноправного использования или справедливого обмена ресурсами для совместного использования населением Земли. Стратегия ы состоит в том, чтобы управлять всей энергией и источниками энергии (даже контроль над ДНК и душой), таким образом, создается правящий класс и класс невольников или рабов. Используя метода группы Ориона «разделяй и властвуй», намного легче управлять населением, при этом оно травмировано страхом, невежественно и находится в нищете.

Перевод: Oreanda Web

Исторически первое исследование такого рода было проведено с использованием митохондриальных ДНК. Ученые взяли выборку от аборигенов Африки, Азии, Европы, Америки и в этой, поначалу небольшой, выборке сравнивали митохондриальные ДНК разных индивидов друг с другом. Они обнаружили, что разнообразие митохондриальных ДНК выше всего в Африке. А поскольку известно, что мутационные события могут изменять тип митохондриальной ДНК, а также известно, как он может меняться, то, следовательно, можно сказать, какие типы людей от каких могли произойти мутационно. У всех людей, у которых брали анализ ДНК, именно у африканцев обнаружили гораздо бóльшую вариативность. Типы митохондриальных ДНК на других континентах были менее разнообразны. Значит, у африканцев было больше времени на то, чтобы накопить эти изменения. Они имели больше времени на биологическую эволюцию, если именно в Африке находят древние остатки ДНК, не свойственные мутациям европейского человека.

Можно утверждать, что генетикам по митохондриальным ДНК удалось доказать происхождение женщины в Африке. Они изучали также Y-хромосомы. Оказалось, что и мужчины происходят из Африки.

Благодаря исследованиям митохондриальной ДНК можно установить не только то, что человек произошел из Африки, но и определить время его происхождения. Время появления митохондриальной праматери человечества было установлено благодаря сравнительному изучению митохондриальной ДНК шимпанзе и современного человека. Зная темп мутационной дивергенции – 2-4 % за миллион лет – можно определить время разделения двух ветвей, шимпанзе и современного человека. Это произошло примерно 5 – 7 миллионов лет назад. При этом темп мутационной дивергенции считается постоянным.

Митохондриальная Ева

Когда говорят о митохондриальной Еве, не имеют в виду особь. Говорят о возникновении путем эволюции целой популяции особей со сходными признаками. Считается, что митохондриальная Ева жила в период резкого сокращения численности наших предков, приблизительно до десяти тысяч особей.

Происхождение рас

Изучая митохондриальную ДНК разных популяций, генетики высказали предположение, что еще до выхода из Африки популяция предков разделилась на три группы, давшие начало трем современным расам – африканской, европеоидной и монголоидной. Считается, что это произошло приблизительно 60 – 70 тысяч лет назад.

Сравнение митохондриальной днк неандартальца и современного человека

Дополнительные сведения о происхождении человека были получены при сравнении генетических текстов митохондриальной ДНК неандертальца и современного человека. Ученым удалось прочитать генетические тексты митохондриальной ДНК костных останков двух неандертальцев. Костные останки первого неандертальца были найдены в Фельдховерской пещере в Германии. Чуть позже был прочитан генетический текст митохондриальной ДНК неандертальского ребенка, который был найден на Северном Кавказе в Межмайской пещере. При сравнении митохондриальной ДНК современного человека и неандертальца были найдены очень большие различия. Если взять какой-то участок ДНК, то из 370 нуклеотидов отличаются 27. А если сравнить генетические тексты современного человека, его митохондриальную ДНК, то обнаружится отличие только по восьми нуклеотидам. Считается, что неандерталец и современный человек – совершенно отдельные ветви, эволюция каждого из них шла независимо друг от друга.

При изучении различия в генетических текстах митохондриальной ДНК неандертальца и современного человека была установлена дата разделения этих двух ветвей. Это произошло примерно 500 тысяч лет назад, а приблизительно 300 тысяч лет назад произошло их окончательное разделение. Считается, что неандертальцы расселились по Европе и Азии и были вытеснены человеком современного типа, который вышел из Африки на 200 тысяч лет позже. И, наконец, приблизительно 28 – 35 тысяч лет назад неандертальцы вымерли. Почему это произошло, в общем-то, пока не понятно. Может быть, они не выдержали конкуренции с человеком современного типа, а может быть, на это были иные причины.

© Г.М.Дымшиц

Сюрпризы митохондриального генома

Г.М. Дымшиц

Григорий Моисеевич Дымшиц, доктор биологических наук, профессор кафедры молекулярной биологии Новосибирского государственного университета, заведующий лабораторией структуры генома Института цитологии и генетики Сибирского отделения РАН. Соавтор и редактор четырех школьных учебников по общей биологии.
Со времени обнаружения в митохондриях молекул ДНК прошло четверть века, прежде чем ими заинтересовались не только молекулярные биологи и цитологи, но и генетики, эволюционисты, а также палеонтологи и криминалисты, историки и лингвисты. Такой широкий интерес спровоцировала работа А.Уилсона из Калифорнийского университета. В 1987 г. он опубликовал результаты сравнительного анализа ДНК митохондрий, взятых у 147 представителей разных этносов всех человеческих рас, заселяющих пять континентов. По типу, местоположению и количеству индивидуальных мутаций установили, что все митохондриальные ДНК возникли из одной предковой последовательности нуклеотидов путем дивергенции. В околонаучной прессе вывод этот интерпретировали крайне упрощенно - все человечество произошло от одной женщины, названной митохондриальной Евой (и дочери и сыновья получают митохондрии только от матери), которая жила в Северо-Восточной Африке около 200 тыс. лет назад. Еще через 10 лет удалось расшифровать фрагмент ДНК митохондрий, выделенный из останков неандертальца, и оценить время существования последнего общего предка человека и неандертальца в 500 тыс. лет назад .

Сегодня митохондриальная генетика человека интенсивно развивается как в популяционном, так и в медицинском аспекте. Установлена связь между рядом тяжелых наследственных заболеваний и дефектами в митохондриальных ДНК. Генетические изменения, ассоциированные со старением организма, наиболее выражены в митохондриях. Что же представляет из себя геном митохондрий, отличающийся у человека и других животных от такового у растений, грибов и простейших и по размеру, и по форме, и по генетической емкости? Как работает и как возник митохондриальный геном у разных таксонов? Об этом и пойдет речь в нашей статье.

Митохондрии называют энергетическими станциями клетки. Помимо наружной гладкой мембраны они имеют внутреннюю мембрану, образующую многочисленные складки - кристы. В них встроены белковые компоненты дыхательной цепи - ферменты, участвующие в преобразовании энергии химических связей окисляемых питательных веществ в энергию молекул аденозинтрифосфорной кислоты (АТФ). Такой “конвертируемой валютой” клетка оплачивает все свои энергетические потребности. В клетках зеленых растений помимо митохондрий есть еще и другие энергетические станции - хлоропласты. Они работают на “солнечных батареях”, но тоже образуют АТФ из АДФ и фосфата. Как и митохондрии, хлоропласты - автономно размножающиеся органеллы - также имеют две мембраны и содержат ДНК.

В матриксе митохондрий, кроме ДНК, находятся и собственные рибосомы, по многим характеристикам отличающиеся от эвкариотических рибосом, расположенных на мембранах эндоплазматической сети. Однако на рибосомах митохондрий образуется не более 5% от всех белков, входящих в их состав. БOльшая часть белков, составляющих структурные и функциональные компоненты митохондрий, кодируется ядерным геномом, синтезируется на рибосомах эндоплазматической сети и транспортируется по ее каналам к месту сборки. Таким образом, митохондрии - это результат объединенных усилий двух геномов и двух аппаратов транскрипции и трансляции. Некоторые субъединичные ферменты дыхательной цепи митохондрий состоят из разных полипептидов, часть которых кодируется ядерным, а часть - митохондриальным геномом. Например, ключевой фермент окислительного фосфорилирования - цитохром-с-оксидаза у дрожжей состоит из трех субъединиц, кодируемых и синтезируемых в митохондриях, и четырех, кодируемых в ядре клетки и синтезируемых в цитоплазме. Экспрессией большинства генов митохондрий управляют определенные гены ядер.

Размеры и формы митохондриальных геномов

К настоящему времени прочитано более 100 разных геномов митохондрий. Набор и количество их генов в митохондриальных ДНК, для которых полностью определена последовательность нуклеотидов, сильно различаются у разных видов животных, растений, грибов и простейших. Наибольшее количество генов обнаружено в митохондриальном геноме жгутикового простейшего Rectinomonas americana - 97 генов, включая все кодирующие белок гены, найденные в мтДНК других организмов. У большинства высших животных геном митохондрий содержит 37 генов: 13 для белков дыхательной цепи, 22 для тРНК и два для рРНК (для большой субъединицы рибосом 16S рРНК и для малой 12S рРНК). У растений и простейших, в отличие от животных и большинства грибов, в митохондриальном геноме закодированы и некоторые белки, входящие в состав рибосом этих органелл. Ключевые ферменты матричного полинуклеотидного синтеза, такие как ДНК-полимераза (осуществляющая репликацию митохондриальной ДНК) и РНК-полимераза (транскрибирующая геном митохондрий), зашифрованы в ядре и синтезируются на рибосомах цитоплазмы. Этот факт указывает на относительность автономии митохондрий в сложной иерархии эвкариотической клетки.

Геномы митохондрий разных видов отличаются не только по набору генов, порядку их расположения и экспрессии, но по размеру и форме ДНК. Подавляющее большинство описанных сегодня митохондриальных геномов представляет собой кольцевые суперспирализованные двуцепочечные молекулы ДНК. У некоторых растений наряду с кольцевыми формами имеются и линейные, а у некоторых простейших, например инфузорий, в митохондриях обнаружены только линейные ДНК .

Как правило, в каждой митохондрии содержится несколько копий ее генома. Так, в клетках печени человека около 2 тыс. митохондрий, и в каждой из них - по 10 одинаковых геномов. В фибробластах мыши 500 митохондрий, содержащих по два генома, а в клетках дрожжей S.cerevisiae - до 22 митохондрий, имеющих по четыре генома.

Митохондриальный геном растений, как правило, состоит из нескольких молекул разного размера. Одна из них, “основная хромосома”, содержит большую часть генов, а кольцевые формы меньшей длины, находящиеся в динамическом равновесии как между собой, так и с основной хромосомой, образуются в результате внутри- и межмолекулярной рекомбинации благодаря наличию повторенных последовательностей (рис.1).

Рис 1. Схема образования кольцевых молекул ДНК разного размера в митохондриях растений.
Рекомбинация происходит по повторенным участкам (обозначены синим цветом).


Рис 2. Схема образования линейных (А), кольцевых (Б), цепных (В) олигомеров мтДНК.
ori - район начала репликации ДНК.

Размер генома митохондрий разных организмов колеблется от менее 6 тыс. пар нуклеотидов у малярийного плазмодия (в нем, помимо двух генов рРНК, содержится только три гена, кодирующих белки) до сотен тысяч пар нуклеотидов у наземных растений (например, у Arabidopsis thaliana из семейства крестоцветных 366924 пар нуклеотидов). При этом 7-8-кратные различия в размерах мтДНК высших растений обнаруживаются даже в пределах одного семейства. Длина мтДНК позвоночных животных отличается незначительно: у человека - 16569 пар нуклеотидов, у свиньи - 16350, у дельфина - 16330, у шпорцевой лягушки Xenopus laevis - 17533, у карпа - 16400. Эти геномы сходны также и по локализации генов, большинство которых располагаются встык; в ряде случаев они даже перекрываются, обычно на один нуклеотид, так что последний нуклеотид одного гена оказывается первым в следующем. В отличие от позвоночных, у растений, грибов и простейших мтДНК содержат до 80% некодирующих последовательностей. У разных видов порядок генов в геномах митохондрий отличается.

Высокая концентрация активных форм кислорода в митохондриях и слабая система репарации увеличивают частоту мутаций мтДНК по сравнению с ядерной на порядок. Радикалы кислорода служат причиной специфических замен Ц® Т (дезаминирование цитозина) и Г® Т (окислительное повреждение гуанина), вследствие чего, возможно, мтДНК богаты АТ-парами. Кроме того, все мтДНК обладают интересным свойством - они не метилируются, в отличие от ядерных и прокариотических ДНК. Известно, что метилирование (временная химическая модификация нуклеотидной последовательности без нарушения кодирующей функции ДНК) - один из механизмов программируемой инактивации генов .

Репликация и транскрипция ДНК митохондрий млекопитающих

У большинства животных комплементарные цепи в мтДНК значительно различаются по удельной плотности, поскольку содержат неодинаковое количество “тяжелых” пуриновых и “легких” пиримидиновых нуклеотидов. Так они и называются - H (heavy - тяжелая) и L (light - легкая) цепь. В начале репликации молекулы мтДНК образуется так называемая D-петля (от англ. displacement loop - петля смещения). Эта структура, видимая в электронный микроскоп, состоит из двуцепочечного и одноцепочечного (отодвинутой части Н-цепи) участков. Двуцепочечный участок формируется частью L-цепи и комплементарным ей вновь синтезированным фрагментом ДНК длиной 450-650 (в зависимости от вида организма) нуклеотидов, имеющим на 5"-конце рибонуклеотидную затравку, которая соответствует точке начала синтеза Н-цепи (ori H). Синтез L-цепи начинается лишь тогда, когда дочерняя Н-цепь доходит до точки ori L. Это обусловлено тем, что область инициации репликации L-цепи доступна для ферментов синтеза ДНК лишь в одноцепочечном состоянии, а следовательно, только в расплетенной двойной спирали при синтезе Н-цепи. Таким образом, дочерние цепи мтДНК синтезируются непрерывно и асинхронно (рис.3).

Рис 3. Схема репликации мтДНК млекопитающих.
Сначала формируется D-петля, затем синтезируется дочерняя Н-цепь,
потом начинается синтез дочерней L-цепи.

В митохондриях общее число молекул с D-петлей значительно превышает число полностью реплицирующихся молекул. Обусловлено это тем, что у D-петли есть дополнительные функции - прикрепление мтДНК к внутренней мембране и инициация транскрипции, поскольку в этом районе локализованы промоторы транскрипции обеих цепей ДНК.

В отличие от большинства эвкариотических генов, которые транскрибируются независимо друг от друга, каждая из цепей мтДНК млекопитающих переписывается с образованием одной молекулы РНК, начинающейся в районе ori H. Помимо этих двух длинных молекул РНК, комплементарных Н- и L-цепям, формируются и более короткие участки Н-цепи, которые начинаются в той же точке и заканчиваются на 3"-конце гена 16S рРНК (рис.4). Таких коротких транскриптов в 10 раз больше, чем длинных. В результате созревания (процессинга) из них образуются 12S рРНК и 16S рРНК, участвующие в формировании митохондриальных рибосом, а также фенилаланиновая и валиновая тРНК. Из длинных транскриптов вырезаются остальные тРНК и образуются транслируемые мРНК, к 3"-концам которых присоединяются полиадениловые последовательности. 5"-концы этих мРНК не кэпируются, что необычно для эвкариот. Сплайсинга (сращивания) не происходит, поскольку ни один из митохондриальных генов млекопитающих не содержит интронов.

Рис 4. Транскрипция мтДНК человека, содержащей 37 генов. Все транскрипты начинают синтезироваться в районе ori H. Рибосомные РНК вырезаются из длинного и короткого транскриптов Н-цепи. тРНК и мРНК образуются в результате процессинга из транскриптов обеих цепей ДНК. Гены тРНК обозначены светло-зеленым цветом.
Сюрпризы митохондриального генома

Несмотря на то, что в геномах митохондрий млекопитающих и дрожжей содержится приблизительно одинаковое количество генов, размеры дрожжевого генома в 4-5 раз больше - около 80 тыс. пар нуклеотидов. Хотя кодирующие последовательности мтДНК дрожжей высоко гомологичны соответствующим последовательностям у человека, дрожжевые мРНК дополнительно имеют 5"-лидерную и 3"-некодирующую области, как и большинство ядерных мРНК. Ряд генов содержит еще и интроны. Так, в гене box, кодирующем цитохромоксидазу b, имеется два интрона. Из первичного РНК-транскрипта автокаталитически (без участия каких-либо белков) вырезается копия большей части первого интрона. Оставшаяся РНК служит матрицей для образования фермента матуразы, участвующей в сплайсинге. Часть ее аминокислотной последовательности закодирована в оставшихся копиях интронов. Матураза вырезает их, разрушая свою собственную мРНК, копии экзонов сшиваются, и образуется мРНК для цитохромоксидазы b (рис.5). Открытие такого феномена заставило пересмотреть представление об интронах, как о “ничего не кодирующих последовательностях”.

Рис 5. Процессинг (созревание) мРНК цитохромоксидазы b в митохондриях дрожжей.
На первом этапе сплайсинга образуется мРНК, по которой синтезируется матураза,
необходимая для второго этапа сплайсинга.

При изучении экспрессии митохондриальных генов Trypanosoma brucei обнаружилось удивительное отклонение от одной из основных аксиом молекулярной биологии, гласящей, что последовательность нуклеотидов в мРНК в точности соответствует таковой в кодирующих участках ДНК. Оказалось, мРНК одной из субъединиц цитохром-с-оксидазы редактируется, т.е. после транскрипции изменяется ее первичная структура - вставляется четыре урацила. В результате образуется новая мРНК, служащая матрицей для синтеза дополнительной субъединицы фермента, последовательность аминокислот в которой не имеет ничего общего с последовательностью, кодируемой нередактированной мРНК (см. таблицу).

Впервые обнаруженное в митохондриях трипаносомы редактирование РНК широко распространено в хлоропластах и митохондриях высших растений. Найдено оно и в соматических клетках млекопитающих, например, в кишечном эпителии человека редактируется мРНК гена аполипопротеина.

Наибольший сюрприз ученым митохондрии преподнесли в 1979 г. До того времени считалось, что генетический код универсален и одни и те же триплеты кодируют одинаковые аминокислоты у бактерий, вирусов, грибов, растений и животных. Английский исследователь Беррел сопоставил структуру одного из митохондриальных генов теленка с последовательностью аминокислот в кодируемой этим геном субъединице цитохромоксидазы. Оказалось, что генетический код митохондрий крупного рогатого скота (как и человека) не просто отличается от универсального, он “идеален”, т.е. подчиняется следующему правилу: “если два кодона имеют два одинаковых нуклеотида, а третьи нуклеотиды принадлежат к одному классу (пуриновых - А, Г, или пиримидиновых - У, Ц), то они кодируют одну и ту же аминокислоту”. В универсальном коде есть два исключения из этого правила: триплет АУА кодирует изолейцин, а кодон АУГ - метионин, в то время как в идеальном коде митохондрий оба эти триплета кодируют метионин; триплет УГГ кодирует лишь триптофан, а триплет УГА - стоп-кодон. В универсальном коде оба отклонения касаются принципиальных моментов синтеза белка: кодон АУГ - инициирующий, а стоп-кодон УГА останавливает синтез полипептида. Идеальный код присущ не всем описанным митохондриям, но ни у одной из них нет универсального кода. Можно сказать, что митохондрии говорят на разных языках, но никогда - на языке ядра.

Как уже говорилось, в митохондриальном геноме позвоночных есть 22 гена тРНК. Каким же образом такой неполный набор обслуживает все 60 кодонов для аминокислот (в идеальном коде из 64 триплетов четыре стоп-кодона, в универсальном - три)? Дело в том, что при синтезе белка в митохондриях упрощены кодон-антикодонные взаимодействия - для узнавания используется два из трех нуклеотидов антикодона. Таким образом, одна тРНК узнает все четыре представителя кодонового семейства, отличающиеся только третьим нуклеотидом. Например, лейциновая тРНК с антикодоном ГАУ встает на рибосоме напротив кодонов ЦУУ, ЦУЦ, ЦУА и ЦУГ, обеспечивая безошибочное включение лейцина в полипептидную цепь. Два других лейциновых кодона УУА и УУГ узнаются тРНК с антикодоном ААУ. В целом, восемь разных молекул тРНК узнают восемь семейств по четыре кодона в каждом, и 14 тРНК узнают разные пары кодонов, каждая из которых шифрует одну аминокислоту.

Важно, что ферменты аминоацил-тРНК-синтетазы, ответственные за присоединение аминокислот к соответствующим тРНК митохондрий, кодируются в ядре клетки и синтезируются на рибосомах эндоплазматической сети. Таким образом, у позвоночных животных все белковые компоненты митохондриального синтеза полипептидов зашифрованы в ядре. При этом синтез белков в митохондриях не подавляется циклогексимидом, блокирующим работу эвкариотических рибосом, но чувствителен к антибиотикам эритромицину и хлорамфениколу, ингибирующим белковый синтез в бактериях. Этот факт служит одним из аргументов в пользу происхождения митохондрий из аэробных бактерий при симбиотическом образовании эвкариотических клеток .

Симбиотическая теория происхождения митохондрий

Гипотезу о происхождении митохондрий и растительных пластид из внутриклеточных бактерий-эндосимбионтов высказал Р.Альтман еще в 1890 г. За век бурного развития биохимии, цитологии, генетики и появившейся полвека назад молекулярной биологии гипотеза переросла в теорию, основанную на большом фактическом материале. Суть ее такова: с появлением фотосинтезирующих бактерий в атмосфере Земли накапливался кислород - побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных гетеротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с бOльшим КПД, чем анаэробные бактерии, расщеплять органические вещества, образующиеся в результате фотосинтеза. Часть свободно живущих аэробов была захвачена анаэробами, но не “переварена”, а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к дыханию клетки. Они скорее “существа”, еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие усилия, не подвергаясь риску быть съеденными.

В пользу симбиотической теории говорят многочисленные факты:

- совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК, не связанные с гистонами (в отличие от линейных ядерных ДНК);

По нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;

Митохондриальные РНК-полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эвкариотические РНК-полимеразы нечувствительны к этому антибиотику;

Белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эвкариот;

Липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;

Кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;

До сих пор сохранились организмы, имитирующие промежуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).

Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных геномов простейших, грибов, растений и высших животных. Но во всех случаях основная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой.

Новый геном может создавать метаболические пути, приводящие к образованию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть - в эндоплазматической сети . Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липидов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрипции и трансляции мтДНК, контролируя тем самым рост и размножение митохондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много митохондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.

Цитоплазматическая наследственность

Помимо кодирования ключевых компонентов дыхательной цепи и собственного белоксинтезирующего аппарата, митохондриальный геном в отдельных случаях участвует в формировании некоторых морфологических и физиологических признаков. К таким признакам относятся характерные для ряда видов высших растений синдром NCS (non-chromosomal stripe, нехромосомно кодируемая пятнистость листьев) и цитоплазматическая мужская стерильность (ЦМС), приводящая к нарушению нормального развития пыльцы. Проявление обоих признаков обусловлено изменениями в структуре мтДНК. При ЦМС наблюдаются перестройки геномов митохондрий в результате рекомбинационных событий, ведущих к делециям, дупликациям, инверсиям или инсерциям определенных нуклеотидных последовательностей или целых генов. Такие изменения могут вызывать не только повреждения имеющихся генов, но и появление новых работающих генов.

Цитоплазматическая наследственность, в отличие от ядерной, не подчиняется законам Менделя. Это связано с тем, что у высших животных и растений гаметы от разных полов содержат несопоставимые количества митохондрий. Так, в яйцеклетке мыши имеется 90 тыс. митохондрий, а в сперматозоиде - лишь четыре. Очевидно, что в оплодотворенной яйцеклетке митохондрии преимущественно или только от женской особи, т.е. наследование всех митохондриальных генов материнское. Генетический анализ цитоплазматической наследственности затруднен из-за ядерно-цитоплазматических взаимодействий. В случае цитоплазматической мужской стерильности мутантный митохондриальный геном взаимодействует с определенными генами ядра, рецессивные аллели которых необходимы для развития признака. Доминантные аллели этих генов как в гомо-, так и в гетерозиготном состоянии восстанавливают фертильность растений вне зависимости от состояния митохондриального генома.

Изучение геномов митохондрий, их эволюции, идущей по специфическим законам популяционной генетики, взаимоотношений между ядерными и митохондриальными генетическими системами, необходимо для понимания сложной иерархической организации эвкариотической клетки и организма в целом.

С определенными мутациями в митохондриальной ДНК или в ядерных генах, контролирующих работу митохондрий, связывают некоторые наследственные болезни и старение человека . Накапливаются данные об участии дефектов мтДНК в канцерогенезе. Следовательно, митохондрии могут быть мишенью химиотерапии рака. Имеются факты о тесном взаимодействии ядерного и митохондриального геномов в развитии ряда патологий человека. Множественные делеции мтДНК обнаружены у больных с тяжелой мышечной слабостью, атаксией, глухотой, умственной отсталостью, наследующихся по аутосомно-доминантному типу. Установлен половой диморфизм в клинических проявлениях ишемической болезни сердца, что скорее всего обусловлено материнским эффектом - цитоплазматической наследственностью. Развитие генной терапии внушает надежду на исправление дефектов в геномах митохондрий в обозримом будущем.

Работа выполнена при поддержке Российского фонда фундаментальных исследований. Проект 01-04-48971.
Автор признателен аспиранту М.К.Иванову, создавшему рисунки к статье.

Литература

1. Янковский Н.К., Боринская С.А. Наша история, записанная в ДНК // Природа. 2001. №6. С.10-18.

2. Минченко А.Г., Дударева Н.А. Митохондриальный геном. Новосибирск, 1990.

3. Гвоздев В.А. // Сорос. образоват. журн. 1999. №10. С.11-17.

4. Маргелис Л. Роль симбиоза в эволюции клетки. М., 1983.

5. Скулачев В.П. // Сорос. образоват. журн. 1998. №8. С.2-7.

6. Игамбердиев А.У. // Сорос. образоват. журн. 2000. №1. С.32-36.

Зачем митохондриям своя ДНК? Хотя почему бы симбионтам не иметь свою ДНК в себе, производя все необходимое на месте? Зачем тогда переносить часть митохондриальной ДНК в ядро клетки, создавая необходимость транспортировки продуктов генов в митохондрии? Почему митохондрии передаются только от одного из родителей? Каким образом митохондрии, полученные от матери, уживаются с геномом клетки, составленным из ДНК матери и отца? Чем больше люди узнают о митохондриях, тем больше вопросов возникает.

Впрочем, это касается не только митохондрий: в любой области любой науки расширение сферы знаний приводит только к увеличению ее поверхности, соприкасающейся с неизвестным, вызывающим все новые вопросы, ответы на которые расширят ту самую сферу с тем же предсказуемым результатом.

Итак, ДНК современных митохондрий распределена весьма странно: небольшая часть генов содержится непосредственно в митохондриях в кольцевой хромосоме (точнее, в нескольких копиях одной и той же хромосомы в каждой митохондрии), а большая часть чертежей для производства составных частей митохондрии хранится в ядре клетки. Поэтому копирование этих генов происходит одновременно с копированием генома всего организма, а производимые по ним продукты проходят долгий путь из цитоплазмы клетки внутрь митохондрий. Тем не менее это во многом удобно: митохондрия избавлена от необходимости копировать все эти гены при размножении, считывать их и строить протеины и другие составляющие, сосредоточившись на своей главной функции по производству энергии. Зачем же тогда в митохондриях все-таки находится небольшая ДНК, для обслуживания которой требуются все эти механизмы, избавившись от которых митохондрии могли бы еще больше ресурсов бросить на основную цель их существования?

Сначала предположили, что оставшаяся в митохондриях ДНК является атавизмом, наследием поглощенной метаногеном про-митохондрии, имеющей полный бактериальный геном. В начале их симбиоза, несмотря на существование в ядре тех митохондриальных генов (м-генов ), которые были необходимы для поддержания внутри метаногена комфортной для про-митохондрий среды (про это подробно написано в о митохондрии), те же самые гены хранились и в каждой из митохондрий. Про-митохондрия в начале своей жизни в качестве симбионта выглядела примерно так же, как современная бактерия на схеме слева от этого абзаца.

И очень медленно из-за невостребованности эти гены исчезали из митохондриальной хромосомы в результате самых разных мутаций. А вот клеточное ядро накапливало все больше м-генов, попадавших в цитоплазму из разрушенных симбионтов-митохондрий и встраивавшихся в геном химеры-эукариота. Как только свежевстроившийся м-ген начинал считываться, клеточные механизмы производили необходимые митохондриям продукты, освобождая симбионтов от самостоятельного их создания. А значит, митохондриальный аналог перешедшего в ядро гена больше не поддерживался в рабочем состоянии естественным отбором и стирался мутациями так же, как все предыдущие. Поэтому логично было бы предположить, что скоро и те гены, которые все еще остались в митохондриях, перейдут в ядро, что приведет к большой энергетической выгоде для эукариот: ведь из каждой митохондрии можно будет убрать громоздкие механизмы копирования, считывания и исправления ДНК, а так же все необходимое для создания протеинов.

Придя к такому выводу, ученые подсчитали, за какой срок путем естественного дрейфа из митохондрии в ядро должны были перекочевать все гены. И оказалось, что этот срок уже давно прошел. В момент появления эукариотической клетки митохондрии имели обычный бактериальный геном из нескольких тысяч генов (ученые устанавливают, каким был этот геном, изучая перенесенные в ядро м-гены у разных организмов), а сейчас митохондрии всех видов эукариот потеряли от 95 до 99,9% своих генов. Больше сотни генов в митохондриях не осталось ни у кого, но и безгеновой митохондрии тоже ни у кого не появилось. Если бы ключевую роль в этом процессе играл случай, то хотя бы несколько видов уже прошли бы путь переноса генов в ядро до конца. Но этого не произошло, и изученные на данный момент митохондрии разных видов, теряющие свои гены независимо друг от друга, сохранили один и тот же их набор, что прямо указывает на необходимость присутствия именно этих генов именно в митохондриях.

Более того, в других энергопроизводящих органеллах клеток, хлоропластах, тоже есть своя ДНК, и точно так же хлоропласты разных видов эволюционировали параллельно и независимо, оставшись каждый с одним и тем же набором генов.

Значит, все те значительные неудобства по поддержанию собственного генома в каждой клеточной митохондрии (а в среднем в одной клетке содержится несколько сотен!) и громоздкого аппарата по его копированию-исправлению-транслированию (основные, но не все! его части ты видишь на картинке слева) чем-то перевешиваются.

И на данный момент существует непротиворечивая теория этого «чего-то»: возможность производить определенные детали митохондрии непосредственно внутри нее необходима для регулирования скорости дыхания и подстройки происходящих в митохондрии процессов под ежеминутно меняющиеся потребности всего организма.

Представь, что в одной из сотен митохондрий клетки вдруг не хватает элементов дыхательной цепи (подробно про нее смотри в ), или в ней недостаточно АТФ-синтаз. Она оказывается либо перегруженной пищей и кислородом и не может их достаточно быстро перерабатывать, или ее межмембранное пространство распирает от протонов, которые некуда девать — полная катастрофа в общем. Конечно же все эти отклонения от идеальной жизненной ситуации запускают множественные сигналы, направленные на выравнивание крена тонущего корабля.

Эти сигналы запускают производство именно тех деталей, которых не хватает митохондрии в данный момент, активируя считывание генов, по которым строятся протеины. Как только митохондрия будет иметь достаточно компонентов дыхательной цепи или АТФаз, «крен выровняется», сигналы о необходимости постройки новых деталей перестанут поступать, и гены опять будут выключены. Это один из удивительно элегантных в своей простоте необходимых механизмов саморегуляции клетки, малейшее его нарушение ведет к серьезной болезни или даже нежизнеспособности организма.

Попробуем логически определить, где должны находиться необходимые для реакции на этот сигнал бедствия гены. Представь ситуацию, что эти гены находятся в ядре клетки, содержащей пару сотен митохондрий. В одной из митохондрий возник например недостаток NADH-дегидрогеназы : первого фермента из дыхательной цепи, чья роль состоит в отрыве двух электронов от молекулы NADH, передаче их следующему ферменту и прокачке 2-4 протонов через мембрану.

На самом деле такие недостатки какого-либо фермента случаются довольно часто, ведь они периодически выходят из строя, количество потребляемой пищи постоянно меняется, потребности клетки в АТФ тоже прыгают вслед за прыжками или валяниями организма, эту клетку содержащего. Поэтому ситуация очень типичная. И вот митохондрия испускает сигнал: «нужно строить больше NADH-дегидрогеназы!», который выходит за ее пределы, проходит по цитоплазме до ядра, проникает в ядро и запускает считывание нужных генов. По клеточным меркам время прохождения этого сигнала весьма существенно, а ведь требуется еще и вытащить из ядра в цитоплазму построенную матричную РНК, создать по ней протеины, переслать их в митохондрию…

И вот тут возникает проблема гораздо более существенная, чем трата лишнего времени: при создании специализированных митохондриальных протеинов они маркируются сигналом «доставить в митохондрию», но вот в какую? Неизвестно. Поэтому в каждую из пары сотен митохондрий начинают поступать протеины, которые им не нужны. Клетка тратит ресурсы на их производство и доставку, митохондрии заполнены лишними дыхательными цепями (что приводит к неэффективности дыхательных процессов), а та единственная митохондрия, которой эти протеины нужны, не получает их в достаточном количестве, ведь ей достается в лучшем случае сотая часть произведенного. Поэтому она продолжает посылать сигналы бедствия, и хаос продолжается. Даже по этому лирико-поверхностному описанию происходящего понятно, что такая клетка нежизнеспособна. И что есть гены, которые должны считываться и транслироваться непосредственно в митохондрии, чтобы регулировать происходящие именно в ней процессы, а не полагаться на запущенный партией ядром план производства гвоздей.. то есть протеинов дыхательной цепи для всех митохондрий сразу.

Проверив, что именно производится по оставшимся в митохондриях разных (а значит, и перемещавших м-гены в ядро независимо друг от друга) организмов, обнаружили, что это именно элементы для построения дыхательных цепей и АТФазы, а так же рибосом (то есть главной части аппарата трансляции).

Подробнее об этом (и не только) можно прочитать у Лейна в «Энергия, секс, самоубийство: митохондрия и смысл жизни» . Ну и можно просто сравнить схему митохондриальной ДНК, где расшифрованы кодируемые продукты (справа от этого абзаца), со схемой дыхательной цепи (вверху), чтобы стало понятно, что именно производится в митохондрии. Конечно же, не каждый протеин, встраиваемый в эту цепь, производится на месте, часть из них строится в цитоплазме клетки. Но основные «якоря», на которые цепляются остальные детали, создаются внутри митохондрии. Что позволяет производить ровно столько ферментов, сколько нужно, и именно там, где они необходимы.

Как митохондрии связаны с сексом и как уживаются разные геномы в одной клетке, напишу в одной из следующих глав этой линии.

Просмотров