Вальцовка листового металла. Конструкция и расчет основных деталей валковых машин Формулы, использованные в расчете

За последнее время ко мне было несколько обращений от читателей блога за помощью в решении одной и той же задачи: как при работе на трехвалковых листогибочных вальцах и профилегибах определить окончательное местоположение среднего ролика (валка)...

Относительно положения крайних роликов (валков), которое обеспечит гибку (вальцовку) заготовки с определенным заданным необходимым радиусом? Ответ на этот вопрос позволит повысить производительность труда при гибке металла за счет уменьшения количества прогонов заготовки до момента получения годной детали.

В этой статье вы найдете теоретическое решение поставленной задачи. Сразу оговорюсь – на практике я этот расчет не применял и, соответственно, не проверял результативность предлагаемого метода. Однако я уверен, что в определенных случаях гибка металла может быть выполнена гораздо быстрее при использовании этой методики, чем обычно.

Чаще всего в обычной практике окончательное местоположение подвижного центрального ролика (валка) и количество проходов до получения годной детали определяется «методом тыка». После длительной (или не очень) отработки технологического процесса на пробной детали определяют координату положения центрального ролика (валка), которую и используют при дальнейших перенастройках вальцев, изготавливая партию этих деталей.

Метод удобен, прост и хорош при значительном количестве одинаковых деталей – то есть при серийном производстве. При единичном или «очень мелкосерийном» производстве, когда необходимо гнуть разные профили или листы разной толщины разными радиусами, потери времени на настройку «методом тыка» становятся катастрофически огромными. Особенно эти потери заметны при гибке длинных (8…11м) заготовок! Пока сделаешь проход…, пока проведешь замеры…, пока перестроишь положение ролика (валка)… — и все сначала! И так десяток раз.

Расчет в Excel местоположения подвижного среднего ролика.

Запускаем программу MS Excel или программу OOo Calc, и начинаем работу!

С общими правилами форматирования электронных таблиц, которые применяются в статьях блога, можно ознакомиться .

Прежде всего, хочу заметить, что листогибочные вальцы и профилегибы разных моделей могут иметь подвижные крайние ролики (валки), а могут — подвижный средний ролик (валок). Однако для нашей задачи это не имеет принципиального значения.

На рисунке, расположенном ниже изображена расчетная схема к задаче.

Вальцуемая деталь в начале процесса лежит на двух крайних роликах (валках), имеющих диаметр D . Средний ролик (валок) диаметром d подводится до касания с верхом заготовки . Далее средний ролик (валок) опускается вниз на расстояние равное расчетному размеру H , включается привод вращения роликов, заготовка прокатывается, производится гибка металла, и на выходе получается деталь с заданным радиусом изгиба R ! Осталось дело за малым – правильно, быстро и точно научиться рассчитывать размерH . Этим и займемся.

Исходные данные:

1. Диаметр подвижного верхнего ролика (валка) /справочно/ d в мм записываем

в ячейку D3: 120

2. Диаметр опорных с приводом вращения крайних роликов (валков) D в мм пишем

в ячейку D4: 150

3. Расстояние между осями опорных крайних роликов (валков) A в мм вводим

в ячейку D5: 500

4. Высоту сечения детали h в мм заносим

в ячейку D6: 36

5. Внутренний радиус изгиба детали по чертежу R в мм заносим

в ячейку D7: 600

Расчеты и действия:

6. Вычисляем расчетную вертикальную подачу верхнего ролика (валка)H расч в мм без учета пружинения

в ячейке D9: =D4/2+D6+D7- ((D4/2+D6+D7)^2- (D5/2)^2)^(½) =45,4

H расч =D /2+h +R — ((D /2+h +R )^2- (A /2)^2)^(½)

7. Настраиваем вальцы на этот размер H расч и делаем первый прогон заготовки. Измеряем или высчитываем по хорде и высоте сегмента получившийся в результате внутренний радиус, который обозначим R 0 и записываем полученное значение в мм

в ячейку D10: 655

8. Вычисляем какой должна была бы быть расчетная теоретическая вертикальная подача верхнего ролика (валка)H 0расч в мм для изготовления детали с радиусом R 0 без учета пружинения

в ячейке D11: =D4/2+D6+D10- ((D4/2+D6+D10)^2- (D5/2)^2)^(½) =41,9

H 0расч =D /2+h + R 0 — ((D /2+h + R 0 )^2- (A /2)^2)^(½)

9. Но деталь с внутренним радиусом изгиба R 0 получилась при опущенном верхнем валке на размер H расч , а не H 0расч !!! Считаем поправку на обратное пружинение x в мм

в ячейке D12: =D9-D11 =3,5

x = H расч H 0расч

10. Так как радиусы R и R 0 имеют близкие размеры, то можно с достаточной степенью точности принять эту же величину поправки x для определения окончательного фактического расстояния H , на которое необходимо подать вниз верхний ролик (валок) для получения на вальцованной детали внутреннего радиуса R .

Вычисляем окончательную расчетную вертикальную подачу верхнего ролика (валка)H в мм c учетом пружинения

в ячейке D13: =D9+D12 =48,9

H = H расч + x

Задача решена! Первая деталь из партии изготовлена за 2 прохода! Найдено местоположение среднего ролика (валка).

Особенности и проблемы гибки металла на вальцах.

Да, как было бы всё красиво и просто – надавил, прогнал – деталь готова, но есть несколько «но»…

1. При вальцовке деталей с малыми радиусами в целом ряде случаев нельзя получить необходимый радиус R за один проход по причине возможности возникновения деформаций, гофр и надрывов в верхних (сжимаемых) и нижних (растягиваемых) слоях сечения заготовки. В таких случаях назначение технологом нескольких проходов обусловлено технологической особенностью конкретной детали. И это не исключительные случаи, а весьма распространенные!

2. Одномоментная без прокаток подача среднего ролика (валка) на большое расстояние H может быть недопустимой из-за возникновения значительных усилий, перегружающих сверх допустимой нормы механизм вертикального перемещения вальцев. Это может вызвать поломку станка. В аналогичной ситуации перегрузки при этом оказаться может и привод вращения роликов (валков)!

3. Концы заготовки, если их предварительно не подогнуть, например, на прессе, останутся прямолинейными участками при гибке на трехвалковых вальцах! Длина прямолинейных участков L чуть больше половины расстояния между нижними роликами А /2.

4. При движении среднего ролика (валка) вниз в сечении заготовки, подверженном изгибу, постепенно нарастают нормальные напряжения, которые вызывают вначале пружинную деформацию. Как только напряжения в крайних верхних и нижних волокнах сечения достигнут предела текучести материала детали σт , начнется пластическая деформация – то есть начнется процесс гибки. Если средний ролик (валок) отвести обратно вверх до начала возникновения пластической деформации, то заготовка отпружинит следом и сохранит свое первоначальное прямолинейное состояние! Именно эффект обратного пружинения вынуждает увеличить размер вертикальной подачи H расч на величину x , так как участки заготовки отпружинивают и частично распрямляются, выходя из зоны гибки, расположенной между роликами (валками).

Мы нашли эту поправку x опытным путем. Обратное пружинение или остаточную кривизну детали можно рассчитать, но это непростая задача. Кроме величины предела текучести материала σт значимую роль при решении этого вопроса играет момент сопротивления изгибу поперечного сечения вальцуемого элемента Wx . А так как часто профили особенно из алюминиевых сплавов имеют весьма замысловатое поперечное сечение, то расчет момента сопротивления Wx выливается в отдельную непростую задачу. К тому же и фактическое значение предела текучести σт часто значительно колеблется даже у образцов, вырезанных для испытаний из одного и того же листа или одного и того же куска профиля.

В предложенной методике сделана попытка уйти от определения обратного пружинения «методом научного тыка». Для пластичных материалов, например алюминиевых сплавов, значение

Не забывайте подтвердить подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку « Спам» )!!!

С интересом прочту Ваши замечания и отвечу на Ваши вопросы, уважаемые читатели!!! Поделитесь результатами практических испытаний методики со мной и коллегами в комментариях к статье!

Прошу уважающих труд автора скачивать файл с расчетом после подписки на анонсы статей!

Цель работы: приобретение практических навыков расчёта и проектирования вальцового станка.

Задание: определить основные параметры рабочих органов вальцового станка, установленного в системе для измельчения пшеницы, производительностью Q , кг/ч.

Из приложения 1 определяем геометрические размеры зерен пшеницы. Диаметр частицы составляет d , мм. Межвальцовый зазор b , мм выбираем из задания.

Производительность станка, степень измельчения и расход энергии взаимосвязаны и определяются отношением окружных скоростей вальцов, диаметром и правильностью геометрической формы вальцов, профилем и характеристикой рифлей. Увеличение окружных скоростей вальцов существенно повышает производительность при незначительном увеличении расхода энергии.

Диаметр вальца определяют из условия затягивания частицы материала в зазор между вальцами. Частица (рис.3.1), находящаяся между гладкими вальцами, вращающимися с одинаковыми угловыми скоростями, будет увлекаться силами трения F в зазор (диаметры вальцов одинаковые). Однако войти в зазор, не деформировавшись, частица не может. Оказывая сопротивление, частица воспринимает со стороны вальцов нормальные усилия P .

Если при этом разность вертикальных составляющих будет направлена к зазору (вниз), то частица, разрушаясь, попадает в зазор, если эта разность направлена от зазора (вверх), то вальцы не смогут захватить частицу и увлечь ее в зазор.

Рис.3.1 – Схема к определению диаметра вальца

Определяем минимальный диаметр вальцов D min , мм из условия захвата частицы вальцами из формулы:

(3.1)

где α – угол острия (α =20…30°).

Применяемый на практике минимальный диаметр вальцов равен 150 мм, а наиболее широко распространенный – 250 мм, что вызвано требованиями высокой жесткости вальцов.

Вальцовый станок имеет две пары вальцов, следовательно, одна пара вальцов имеет производительность Q B = Q /2.

Длину вальцов L р, м ориентировочно определяем по формуле (3.2), при этом удельную нагрузку для первой драной системы определяем по приложению 2, q , кг/(м ч). Отсюда:



По приложению 2 выбираем вальцы с параметрами: количество рифлей на 1 см; уклон рифлей, %.

Проверяем правильность расчета рабочей длины вальцов L р, м из формулы (3.5), предварительно определив скорость обработки зерна V з, м/с по формуле (3.4), при этом принимаем скорость быстровращающегося вальца V б, м/с. В настоящее время при размоле зерна в сортовую муку принимают V б =5,5...6,5 м/с, при размоле зерна в обойную муку V б = 8...12 м/с. В первом случае соотношение скоростей выбирают: для драных систем К = 2,5 и для размольных систем К = 1,1...1,6 (Приложение 1).

Тогда V м, м/c равно:

V м = V б /K (3.3)

(3.4)

(3.5)

где b – зазор между вальцами, м;

Q B – производительность станка, кг/ч;

ρ – объемная масса измельчаемого продукта, кг/м 3 ;

V З – скорость обработки зерна в зазоре между вальцами, м/с;

k 1 – коэффициент полезного использования зоны измельчения, который всегда меньше единицы (k 1 =0,2...0,3).

Определяем величину рабочего прогиба по формуле (3.7).

Предварительно определяем момент инерции сечения вальца J , м 4 по формуле (3.6):

где D – диаметр вальца, м.

Отсюда прогиб y , м равен:

1 = 3000 кгс/м;

L – расстояние между опорами, м; L = L p + 2 ΔL ;

ΔL – расстояние от торца вальца до середины подшипникового узла, ΔL = 0,06м;

Е – модуль упругости материала вальца, Е = 1,6 10 10 кгс/м 2 ;

J – момент инерции сечения вальцов, м

Проверяем условие y < [y ] = 1·10 -5 м

Частоту вращения вальцов n (с -1) определяем по формуле:

где V б – скорость быстровращающегося вальца, м/с;

D – диаметр вальца, м.

Мощность, потребную для привода одной пары вальцов
N (кВт) определяем по формуле:

(3.9)

где L р – рабочая длина вальцов, м;

D – диаметр вальца, м;

n

d – диаметр частицы исходного материала, м.

Для обеспечения вращения быстровращающегося вальца с частотой n , мин -1 разработаем кинематическую схему привода. Кинематическая схема представлена на рис. 3.2.

Для разработки кинематической схемы привода вальцов необходимо рассчитать общее передаточное число, которое определяем по формуле:

Для рассчитанного передаточного отношения достаточно установить ременную передачу, которая обеспечит точную частоту вращения ротора.

Общий коэффициент полезного действия является произведением всех КПД передач привода и определяется по формуле:

Ременная передача рассчитывается по стандартной методике.

ƞ рп. – КПД ременной передачи, ƞ рп = 0,95;

ƞ зп – КПД зубчатой передачи, ƞ зп = 0,95.

Установленную мощность привода N np (кВт) определяем по формуле:

По приложению 3 для привода шнека выбираем электродвигатель с N эд, кВт, n эд =1500 мин -1 . Циркуляционную мощность N ц, кВт определяем по формуле:

(3.13)

Крутящий момент на валу вальцов М к (Н м) определяем по формуле:

где n – частота вращения вальцов, с -1 ;

Силы Т и R (H) определяются из технологического расчета по формулам:

, (3.15)

, (3.16)

где q – равномерно распределенная нагрузка в межвальцовом зазоре (при измельчении q = 3·10 4 Н/м, при плющении
q =2,5·10 5 Н/м);

L p – рабочая длина вальцов, м;

β – угол наклона оси вальцов, β =45º.

Рис. 3.2. Кинематическая схема привода вальцовой пары:

1- быстровращающийся валок; 2 - медленновращающийся валок;
3 - первая зубчатая передача; 4 - вторая ременная передача;
5- первая ременная передача; 6 - электродвигатель; 7 - распределительный валок; 8 - дозировочный валок; 9 - вторая зубчатая передача

Вальцовые устройства снабжают механизмами питания и очистки поверхности вальцов. Механизм питания должен обеспечивать регулируемую равномерную по всей длине вальца подачу заданного количества продукта. В настоящее время чаще всего применяют двухвалковый питающий механизм (рис.3.3), верхний питающий валик называют дозировочным, а нижний – распределительным. Дозировочный валик имеет продольные рифли, а распределительный валик имеет поперечные рифли.

Механизм питания должен подавать продукт в зону измельчения со скоростью, равной или близкой к скорости медленновращающегося вальца.

Диаметром питающего валка D п = 2r задаемся конструктивно, D п = 80 мм.

Рис.3.3. Питающий механизм вальцового станка:

1 – быстровращающийся валок; 2 – медленновращающийся валок;

3 – распределительный валок; 4 – дозировочный валок.

М – точка отрыва частицы от распределительного валка; А – расстояние, отделяющее точку отрыва частицы от горизонтального диаметра валка; В – высота падения частицы; r – радиус распределительного валка;
b – точка касания частицы медленновращающегося валка; Q – сила тяжести частицы

Максимальную окружную скорость распределительного питающего валка V рв, м/с определяем по формуле (3.17), при этом А = r , где А – расстояние от точки падения частицы до оси вращения распределительного валка.

Высоту падения частицы В (м) определяем из формулы (3.18), зная конечную скорость падения частицы V k = V м.

(3.18)

Частоту вращения питающего валка n рв, мин -1 определяем по формуле:

(3.19)

Вращение питающего валка производится через ременную передачу от быстровращающегося вальца, а вращение дозировочного валка производится от питающего через зубчатую передачу в том же направлении со скоростью 1,5…2 раза меньше, чем скорость питающего валка. Отсюда скорость дозировочного валка n доз.в. , мин -1 составляет:

где n рв – частота вращения питающего валка, мин -1 .

Частоту вращения быстровращающегося валка n бв, мин -1 определяем по формуле:

Порядок оформления отчета. Отчет о расчетно-практической работе оформляется в соответствии с требованиями, изложенными в , и включает в себя следующие разделы:

– цель работы;

– расчетную часть, в которой приводится расчет вальцового станка согласно предлагаемому варианту (прил. 1);

– графическую часть, в которой даются чертеж схемы определения диаметра вальца и кинематическая схема вальцового станка с указанием рассчитанных параметров передач.

Приложение 1

Таблица 3.1– Исходные данные для расчета вальцовых устройств

Номер варианта Производи­тельность Q , кг/ч Система Окружная скорость быстровращающегося вальца V б, м/с Коэффициент соотношения скоростей, К Диаметр частицы d , мм Межвальцовый зазор b , мм
1 -я размольная 6,5 1,5
2-я шлифовочная 6,5 2,5 1,5
10-я размольная 5,5 1,5
2-я сходовая 5,5 1,6 1,5
VI драная 6,5 2,5
III драная 6,5 2,5 2,5
V драная 6,5 2,5
6-я размольная 6,5 1,1 2,5
1-я сходовая 2,5
I драная 6,5 2,5 1,5
9-я размольная 2,5 1,5
II драная крупная 6,5 2,5
V драная 6,5 1,5
10-я размольная 5,5 1,8 2,5
2-я сходовая 5,5 1,4 2,5

Приложение 2

Таблица 3.2– Некоторые параметры вальцовых станков

Системы Удельная потребная мощность, кВт/см Количество рифлей на 1 см длины окружности вальцов Уклон рифлей. %
I драная 800-1200 0.185-1.200 3.5-4.5 4-6
II драная крупная 600-900 0.225-0.240 4.0-5.5 4-6
II драная мелкая 600-900 0.135-0.155 4.0-5.5 4-6
III драная 400-600 0.205-0.225 5.0-6.5 4-6
IV драная крупная 250-300 0.175-0.210 5.5-6.5 6-8
IV драная мелкая 300-400 0.145-0.160 5.5-6.5 6-8
V драная 200-300 0,140-0,155 6.5-8.0 7-8
VI драная 120-150 0.115-0.125 7.5-8.5 7-8
VII драная - 0.135-0.155 7.5-8.5 8-9
1-я шлифовочная 300-400 0.070-0.080 9.0 6-8
2-я шлифовочная 300-350 0.070-0.080 9.0 6-8
3-я шлифовочная 300-350 0.080-0.085 9.5 6-8
4-я шлифовочная 200-300 0.080-0.095 10.0 6-8
5 и 6-я шлифовочные - 0.080-0.095 9.5-10.0 7-10
Вымольные - 0.080-0.090 10.0 8-10
1.2.3.4 и 5-я размольные 180-300 0,105-0,115 10-11 6-8
6.7 и 8-я размольные 125-200 0.105-0.115 10-11 8-10
9 и 10-я размольные 125-150 0.105-0.115 10-11 8-10
1-я сходовая 180-250 0.100-0.110 8-10
2-я сходовая 140-200 0.100-0.110 8-10

Определение распорных усилий и полезно потребляемой мощности.

При вальцевании в рабочем зазоре возникают силы, которые стараются раздвинуть валки. Эти силы называются распорными. Их необходимо учитывать при расчете, иначе при чрезмерно больших усилиях возможна поломка вальцев.

Сложность явления вальцевания и недостаточная теоретическая изученность затрудняют расчет распорных усилий и потребляемой мощности. Данные величины можно определить двумя методами:

1. Обработкой опытных данных на основе теории подобии

2. Математическими анализом процесса при введении определенных допущений.

Для первого метода проводят опыты на модельной машине, получают распорные усилия и потребляемую мощность.

где: - диаметр валков; - величина зазора; - величина фрикции; - удельный вес смеси; L - длина валка; - угловая скорость быстроходного валка; - конечная пластичность материала - опытные коэффициенты, которые для некоторых материалов приведены в справочниках.

По второму методу простые математические зависимости получаются при введении следующих допущений:

1. Эффективная вязкость (средняя) смеси не изменяется

2. Режим течения смеси в зазоре минимальный – ламинарный

3. Материал прилипает к поверхности валков и скорость слоев у поверхности равна скорости движении валка (U=V)

4. Инерционные силы малы

5. Течение материала одномерно (в зазор)

6. Скорость смеси не меняется по вертикали

7. Давление на входе и выходе материала в валки равно нулю

8. Давление в плоскостях, параллельных осям валков, не меняется.

Тогда уравнение движения вязкой жидкости (Навье-Стокса) имеет вид:

, (6.3)

При интегрировании данного уравнения и учитывая допущения получено выражения для распорного усилия :

, (6.4)

где: - величина фрикции; - эффективная вязкость; - скорость переднего валка; - радиус валка; - длина валка; - зазор между валками.

Момент потребляемый валками равен сумме крутящих моментов:

, (6.5)

- крутящие моменты быстроходного и тихоходного валков.

Полная мощность потребляемая валками.

Она рассчитывается по формуле:

(6.8)

где: - необходимый полный крутящий момент.

где: - момент холостого хода; - момент дополнительных сил трения.

, (6.10)

где: - радиальная нагрузка на цапфу; - коэффициент трения подшипника; - диаметр цапфы; - передаточное число трансмиссии и фрикционной пары; - общий К.П.Д. трансмиссии и фрикционной пары;

Момент дополнительных сил равен:



, (6.11)

где: - распорное усилие на валки.

Расчет производительности .

Валковые машины работают по схемам однократного и многократного пропуска перерабатываемого материала через зазор. Для однократного прохождения материала через вальцы производительность определяется по формуле:

, (6.12)

где: - единовременной загрузки; - коэффициент использования машины (0.85 - 0.9). - удельный вес материла; - продолжительность цикла;

где: - диаметр переднего валка; - длина бочки валка.

Время цикла определяется по формуле:

, (6.14)

где: - время загрузки и выгрузки; - технологическое время работы. Это время определяется экспериментально.

Необходимо отметить, что существует и другие расчета зависимости при определении производительности вальцев.

Тепловой расчет вальцев.

При переработке материала в зазоре валков выделяется большое количество тепла и в результате этого повышается температура как рабочей поверхности валков, так и перерабатываемой смеси. Для предотвращения нежелательных температурных изменений (подвулканизация и т.п.) предусматривается специальное охлаждение валков. Количество тепла выделяемого при переработке можно определить по мощности потребляемой вальцами, с учетом КПД всех передач и цапф.

Это тепло расходуется на нагревание обрабатываемой смеси Q 1 , на потери в окружающую среду Q 2 и на нагрев охлаждающей водой Q 3 .

, (6.16)

где: G- производительность валка; c- удельная теплоемкость; t k , t n - конечная и начальная температура смеси.

Потери тепла в окружающую среду , складывается из потерь тепла конвекцией и лучеиспусканием .

, (6.18)

где: - температура валка и окружающего воздуха, ° С; - абсолютная температура валка и воздуха, ° К; - общий коэффициент излучения (зависит от излучения валка, окружающей среды и абсолютно черного тела); - поверхность теплоотдачи и излучения; - коэффициент теплоотдачи (для неподвижного воздуха).



, (6.19)

60-У р

Где V - объем единовременной загрузки, м3; р - плотность резиновой смеси, кг/м3; тц - продолжительность цикла обработки материала, мин. Производительность вальцев непрерывного действия, а также каландров:

G= 60-п^-п-Ь^-р, - к-

Где D - диаметр валка, м; п - частота вращения валка, об/мин;

Ь - ширина выходящей ленты, м; h - толщина выходящей ленты, м; р - плотность перерабатываемого материала, кг/м3.

Расчет распорных усилий.

Расчет распорных усилий вальцев по методике, основанной на гидродинамической теории вальцевания.

Где Т1 и Т2 - коэффициенты, зависящие от А и f (см. таблицу 2. 6). Таблица 2. 6. Зависимость Т1 и Т2 от А и f

3 к а V", (1+/)-Я

2 (I + 2) _ д

(аг^ V 1_ 1 +agctg V д1_1) _ -2

(аг^ V 1_1 + agctg 4 д1_ 1) _ 2

Где V: - окружная скорость медленного валка, м/с; 81 - коэффициент зависящий от А (см. таблицу 2. 2). Мощность

V 112 Я

Где R - радиус валка, м.

Методика, основанная на теории подобия.

Определяется зависимость потребляемой вальцами энергии от основных факторов:

N = ^ у, w, ^ D, Ц О, (1)

N = £г(М, у, w, h, D, Ц О, (2)

Где R - восстанавливаемость каучуков; у - плотность каучуков; w - угловая скорость валка; h - зазор между валками;

D - диаметр валка;

Ц - длина валка;

£■ фрикция;

Эти уравнения применимы для машины, на которой проводились эксперименты. Для при­менения к другим машинам вводится симплекс D1 /О, учитывающий различия диаметров исследуемой и проектируемой машин. При решении уравнений 3 и 4 относительно N имеем:

Существуют критериальные уравнения для смесей на основе бутадиеннитрильных и бутади - енстирольных каучуков.

2.2.1 Назначение и классификация

Каландры в резиновой промышленности применяются для изготовления тонких листовых за­готовок из резиновых смесей, обрезинивания кордов, промазки технических тканей, нанесения ри­сунка и профилирования заготовок.

В зависимости от вида выполняемой работы каландры подразделяются на следующие типы:

A) Листовальные - для выпуска тонких листовых заготовок из резиновых смесей. Изготавли­ваются трех и четырехвалковые. Валки, как правило, имеют одинаковую окружную ско­рость вращения.

B) Промазочные - для промазки или втирания резиновой смеси в ткань. Скорость вращения среднего валка в 1,2^1,5 раза выше, чем у верхнего и нижнего валков. Промазочные ка­ландры бывают обычно трехвалковыми.

C) Универсальные каландры применяются, когда необходимо на одной машине осуще­ствлять листование резиновых смесей и промазку тканей. Могут иметь 3 или 4 валка.

D) Дублировочные каландры - имеют два валка, вращающихся с одинаковой скоростью. Ис­пользуются для получения многослойных заготовок. Дублирование может осуществлять­ся и на трехвалковом каландре, снабженном специальным дублировочным роликом.

E) Профильные - обычно имеют четыре валка, из которых выносной является профильным (имеет рисунок). Используются для создания рисунка или выпуска профильной резиновой ленты.

^ Лабораторные каландры - предназначены для проведения лабораторных исследований.

Имеют 3 или 4 валка.

Каландры могут классифицироваться по расположению осей валков: Г (Ь) - образным, S - образным, Z - образным, вертикальным, треугольным, угловым и другим расположением валков (см. рис. 2. 11).

По характеристике давления валков и изменению зазора каландры делятся:

С постоянным зазором, при этом давление в зазоре величина переменная;

С переменным зазором, при этом давление в зазоре величина постоянная.

В первом случае положение осей валков может меняться принудительно только при помощи системы регулировки величины зазора. В процессе выполнения одной операции величина зазора постоянна.

Во втором случае в паре двух валков ось одного неподвижна, а ось второго перемещается за счет использования подвижных подшипников. По этой причине зазор изменяется, а давление оста­ется постоянным.

4.2 Штамповка на ковочных вальцах (вальцовка).

Эта штамповка напоминает продольную прокатку в одной рабочей клети, на двух валках которые закрепляют секторные штампы, имеющие соответствующие ручьи.

Нагретую заготовку 1 подают до упора 2 в тот момент, когда секторные штампы 3 расходятся. При повороте валков происходит захват заготовки и обжатие ее по форме полости; одновременно с обжатием заготовка выталкивается в сторону подачи.

На вальцах изготовляют поковки сравнительно несложной конфигурации, типа звеньев цепей, рычагов, гаечных ключей и т. п. Кроме того, на вальцах фасонируют заготовки для последующей штамповки, чаще всего на кривошипных горячештамповочных прессах.

Профилируют и штампуют на вальцах в одном или нескольких ручьях. Исходное сечение заготовки принимают равным максимальному сечению поковки, так как при вальцовке происходит главным образом протяжка.

4.3 Устройство и принцип работы деформирующего оборудования и штамповочной оснастки.


Кинематическая схема КГШП

Рисунок 1

1- Ползун;

4- Электродвигатель

5- Приёмный вал

6- Малое зубчатое колесо

7- Большое зубчатое колесо

8- Пневматическая функциональная дисковая муфта

9- Кривошипный вал

11- Стол пресса

Штамповка на кривошипных горячештамповочных прессах КГШП изготовляют усилием 5-10 мм. Они успешно заменяют и во многих случаях по технологическим возможностям превосходят паро-воздушные штамповочные молоты с массой подающих частей до 10 тонн. КГШП характерно то, что усилие, возникающее при штамповке, воспринимается массивной станиной. На станине пресса установлен электродвигатель. На его валу закреплён шкив, от которого крутящий момент через клиноременную передачу передаётся маховику, закреплённому на приёмном валу. На другом конце этого вала насажана малое зубчатое колесо, находящееся в зацеплении с большим зубчатым колесом со встроенной в него пневматической муфтой включения. Большое зубчатое колесо с муфтой расположено на коленчатом валу, который при вращении приводит в движение шатун с ползуном в направляющие стороны.

Для остановки вращения кривошипного вала после включения муфты служит тормоз. Стол пресса, установленный на наклонной поверхности, может перемещаться клином и тем самым в незначительных пределах регулировать высоту штамповочного пространства. Для обеспечения удаления поковки из штампа пресса имеется выключатели в столе и ползуне. Выталкиватели срабатывают при ходе ползуна вверх. Остановка моховика производится тормозом при включенном электродвигателе.

В отличии от молотов прессы имеют жёсткий график движения ползуна, полный ход которого вверх и вниз одинаков и равен удвоенному радиусу кривошипа. В связи с этим при многоручьевой штамповке невозможно применить протяжной, подкатной, отрубной ручьи. Поковки, требующие использования указанных ручьёв штампуют на КГШП из заготовок периодического проката или предварительно фасонированных на ковочных пальцах. Скорость ползуна в момент соприкосновения верхней части штампа с заготовкой равна 0,3 – 0,8 м/с, то есть в несколько раз меньше скорости базы молота в момент удара. Так как деформация выполняется в каждом ручье за один ход пресса, заготовки должны быть чистыми от окалины во избежании порчи поверхности паковки.

Постоянство величины хода ползуна, большая точность его движения в мощных регулируемых направляющих станины пресса, применение штампов с направляющими колонками и выталкивателями для принудительного удаления поковок обеспечивает большую точность изготовления поковок, с меньшими штамповочными уклонами, припусками, допусками и расходом металла, чем при штамповке на молотах. Выталкиватели размещают в вертикальных отверстиях ручьевых вставок штампа. Во время штамповки рабочей поверхности выталкивателей составляют часть поверхности ручьёв. При обратном ходе ползуна специальный механизм в штампе, приводимый в действие от выталкивателя пресса, поднимает ручьевые выталкиватели, которые выбрасывают поковку из ручья.

Для исключения заклинивания и поломки пресса открытые штампы на КГШП не смыкаются на величину заусенца из-за отсутствия ударов служат больше молотовых. На КГШП используют штампы сборной конструкции с ручьевыми вставками, которые при износе заменяют. Наличие выталкивателей обеспечивает удобство штамповки в закрытых штампах выдавливанием и прошивкой. При выдавливании заготовку устанавливают в полость штампа и осаживают в этой полости с одновременным истечением части металла за её пределы. КПД прессов примерно в 2 раза выше КПД молотов. Прессы совершают 35-90 ходов в мин, то есть примерно столько, сколько 4 эквивалентные им по мощности молоты. Штамповка на прессе в 1,5 – 3 раза производительней, чем на молоте, и её легче механизировать и автоматизировать.

При закрытой штамповке без заусенца полученная по приведённой формуле значения усилия уменьшают на 2,0 – 2,5%. P = k F, где P – площадь проекции штампованной паковки с заусеничным носочком, см кв; k – коэффициент, учитывающий сложность формы поковок (k = 6,4 / 7,3).

Просмотров